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Chapter 1 

Introduction 

1.1 Motivation: The Memory Management Problem 

As computer systems are being used to solve more complex problems, higher level 

languages are devised to allow the programmers to express their solutions in more natural 

terms. The programs are written in ways that are closer to the thought process and further 

away from the tedious details and constraints that exist in every computer system. This puts 

greater strain on the system implementors to provide efficient support in terms of library 

subroutines or high-level language constructs. In some areas of applications, particularly in 

the area of artificial intelligence, the problems require enormous symbolic processing power 

for a vast amount of information, in addition to the traditional arithmetic processing power. 

In terms of computer architecture, symbolic processing translates to simple comparison, 

complex pattern matching, transfer, and storage of data. Computer systems contain a 

hierarchy of storage designed to minimize cost while maximizing performance. Efficient 

management of the available memory space allows larger programs to run in a short time. 

While imperative languages (e.g. Pascal, C) require the programmer to explicitly allocate 

and deallocate memory for dynamic data structures, functional languages (e.g. Lisp) and 

logic programming languages (e.g. Prolog) have automatic memory allocation which frees 

the programmer from the tedious details of memory management. 

Prolog [ CM87], a programming language based on first order predicate logic [Llo87], 

has found its niche in the area of natural language processing, expert systems, compiler 

construction, geometric modeling, and design automation. Its features include pattern 

matching (unification), natural expression of non-determinism (via backtracking), the single-
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assignment logical variable, and dynamic typing. These features combine to allow program­

mers to express algorithms in very compact code. In addition, the simple syntax and 

semantics of Prolog provides a useful vehicle for expressing parallelism. Two types of par­

allelism that exist naturally in Prolog are AND-parallelism, which computes subparts of a 

potential solution in parallel, and OR-parallelism, which explores alternative solutions in 

parallel. 

On the negative side, Prolog is very memory intensive, both in terms of frequency 

of memory accesses and of memory space usage. The high frequency of memory access is 

characteristic of symbolic processing, where large amount of data needs to be transferred 

and compared. This behavior is in contrast to numeric applications, where the ratio of 

operation time to data transfer time is higher. Execution of Prolog requires a larger memory 

space than other languages due to two of its features: single assignment and automatic 

backtracking. At the source language level, the single assignment feature does not allow 

rewriting of the same memory location once a value has been assigned to it, and thus a new 

memory location has to be used. The backtracking feature requires the saving of program 

state and variable bindings to be restored upon backtracking. The storage space must be 

allocated dynamically due to the dynamic typing. 

In sequential execution, memory management is largely a garbage collection prob­

lem. Numerous garbage collection techniques have been proposed for Lisp systems, and 

some of this technology can be transferred over to Prolog [TH88]. The Warren Abstract 

Machine [War83] contains stack mechanisms that can very efficiently recover unused space 

upon backtracking, which is when a program search path is terminated and an alternative 

path is explored. For highly deterministic programs in which little backtracking occurs, the 

stacks continue to grow and garbage collection is needed [TH88]. 

For parallel execution, memory management takes on a new perspective. In a 

parallel execution model for Prolog such as the PPP Execution Model [Fag87], many tasks 

are created to traverse the multiple branches of the Prolog tree structure. Each of these 

tasks has its own data space for storing its intermediate results, and may read data stored 

in other data spaces. A global address space is needed to facilitate such extensive data 

sharing among the tasks. For efficiency reasons, an address should fit inside a register, and 

thus the global address space available to the tasks is often limited by the width of the 

address register in the processor. With today's VLSI technology, the address registers of 

most commercially available processors are typically 32-bit wide, and some are 40-bit wide. 
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This restriction means that the address space must be distributed more efficiently among 

the parallel tasks, such that each task has sufficient space for private and shared data while 

maintaining fast access to them. 

1.2 The Thesis 

This dissertation examines two aspects of memory management for parallel execu­

tion of Prolog on shared memory multiprocessors: efficient space assignment for the parallel 

tasks and fast access to both shared and non-shared data. The thesis to be presented in 

this dissertation is as follows: 

• With respect to space, a dynamically-allocated, hybrid heap-stack scheme can efficiently 

support the space requirements of a very large number of parallel tasks within a limited 

space, thus allowing the potential parallelism to be fully realized by the execution model. 

• With respect to time, a two-tier memory architecture- which has separote synchro­

nization memory and high-bandwidth memory - can significantly reduce the synchro­

nization bottleneck in a shared memory multiprocessor environment. 

1.3 Research Direction 

Memory management for parallel execution of Prolog must take into consideration 

the various levels: the language data space organization, the virtual address space of the 

system architecture, and the system's physical memory. For complete control over the 

system's architectural parameters and for ease of instrumentation, we chose a simulation 

approach for our studies. Compared to analytical and stochastic modeling, simulation also 

provides more accurate performance estimates. As part of this dissertation, a complete 

system simulator has been written to simulate a parallel execution model of Prolog on a 

multiprocessor architecture. The simulator models a shared-memory multiprocessor system, 

with VLSI-PLMs as the processing units. The VLSI-PLM [STN*88] is a high performance, 

single VLSI chip, processor for compiled Prolog that has been fabricated and successfully 

tested. The simulator also models hardware extensions to the VLSI-PLM for supporting 

parallel execution and memory management. 

Among the various parallel execution models that have been proposed, we choose 
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the PPP execution model by Fagin [Fag87] for study of parallel execution of Prolog. The 

reasons are as follows: 

• The PPP is based on the WAM, which is an efficient and well understood engine for 

sequential execution of Prolog. Much research has been done at UC Berkeley on the 

PLM, a special-purpose architecture for Prolog, and we have learned a great deal 

from our past experience. The PPP model was also developed at UC Berkeley and is 

well-understood here. 

• The PPP stt.pports both AND- and OR-parallelism. Early experience with parallel 

execution indicates that AND-parallelism is good for some Prolog programs while 

OR-parallelism is more effective for others. 

• The PPP employs a shared memory architecture. Currently, shared memory multi­

processor architectures enjoy the greatest commercial success. Systems such as the 

Sequent Balance [TGF88] and Encore Multima.x [WWS*89] are widely used due to 

their low cost/performance ratios. Shared memory systems are easier to understand 

and to program, and free the programmer from low level memory architecture de­

tails. Since the PPP execution model exploits "medium-grain" parallelism in Prolog, 

a shared memory system is necessary to minimize the communication overhead. 

Initial performance results of the PPP execution model reported by Fagin in [FD87] 

paint a dim picture of the performance of the PPP, with little speedup obtained from the set 

of small benchmarks. Later results reported in his dissertation [Fag87] are more encouraging. 

For the PLM compiler benchmark, a speedup of 7.6 was obtainable with 11 processors. In 

any case, we believe that these results are inconclusive and deserve further studies because: 

• The PPP creates many sleeper tasks which waste memory, and sequential execution 

is forced when there is no more task space available. 

• As pointed out by Fagin, most of the Prolog programs in his benchmark set are small 

(in terms of time and space requirements) and are inherently sequential 1 • Larger 

benchmarks are needed for a more appropriate evaluation of the execution model. 

1 Note that it is always possible to write a. computer program that is strictly sequential thus no speed 

up is possible on any execution model. Clearly parallel execution models are effectively only with programs 

that have some inherent parallelism. 
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• The PPP model, as described by Fagin in his dissertation, is a first cut at parallel 

execution, and leaves out a number of details needed for practical implementation and 

efficient execution. This research fills in some of those gaps, particularly in memory 

management. The lack of memory management in this model prevents the large 

benchmarks from being run in Fagin's PPP simulator. The large benchmarks, which 

exploits medium-grain parallelism, can potentially have the greatest performance gain 

in this model. 

• The PPP simulator written by Fagin uses an ideal, single-cycle memory. The simu­

lator used in this research contains realistic memory parameters for a more detailed 

evaluation of the execution model. 

1.4 Contributions 

The issues of efficient parallel execution in the PPP are similar to those of other 

parallel models, issues such as task creation, termination, and communication, The issue 

of memory management for parallel execution was not addressed in Fagin's dissertation, 

This research fills the memory management gap for the PPP execution model in particular, 

as well as for other parallel execution models with similar data organization and memory 

behavior. The contributions of this research include: 

1. a dynamic memory management scheme to facilitate sharing among parallel tasks 

executing in a shared memory multiprocessor; 

2. a flexible, low-level simulator for complete system simulation, including the parallel 

execution model, the cache, and the memory interconnection network of the multi-

processor; 

3. a detailed simulation study of the memory behavior of a parallel execution model 

of Prolog on a shared memory multiprocessor architecture and the evaluation of the 

proposed dynamic memory management scheme; and 

4. a feasibility study and a preliminary performance analysis of a two-tier memory archi­

tecture for shared memory multiprocessors which separates synchronization and write 

shared data from read shared and local data. 
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1.5 Dissertation Outline 

This dissertation is divided into ten chapters: 

• Chapter 1 has provided the motivation, the research direction, and the contributions 

of this dissertation. 

• Chapter 2 discusses shared memory versus message passing systems and parallel 

execution on multiprocessors. 

• Chapter 3 provides a literature survey on memory management support for sequen­

tial and parallel execution of Prolog. 

• Chapter 4 introduces a dynamic memory management scheme for parallel execution 

of Prolog. This hybrid stack-heap mechanism, called Explicitly Linked Paging Stack 

(ELPS), utilize the available address space more efficiently. 

• Chapter 5 describes the simulator used in the research. It is a complete system simu­

lator, simulating the parallel execution model as well as the underlying multiprocessor 

architecture. 

• Chapter 6 presents the methodology used in validating the simulator. The simulation 

results are compared with those of a previously validated simulator. 

• Chapter 1 reports the memory behavior of the PPP parallel execution model for 

Prolog, and the simulation results of the ELPS memory management mechanism 

with various parameters. 

• Chapter 8 describes the Aquarius-II, a multiprocessor architecture with a two-tier 

memory system. This architecture is designed to reduce the synchronization bottle 

neck of a single bus system by using a crossbar for unsynchronized data transfers. 

• Chapter 9 reports the simulated performance results of the Aquarius-II cache and 

memory system. 

• Chapter 10 provides some concluding remarks and directions for future research. 
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Chapter 2 

Multiprocessors and Parallel 

Execution 

2.1 Multiple Processor Systems 

The demand for very fast computation continues to outgrow the existing state-of­

art computer systems. Steady advances in processor and memory system designs, digital 

circuit design, and high density packaging have greatly reduced the sequential execution 

time. Parallel processing holds the promise of further reducing the execution time by sev­

eral orders of magnitude. Numerous architectures have been designed and built with tightly 

coupled multiple processors for parallel processing. With respect to the memory organi­

zation and interprocessor communication, these systems generally fall into two categories: 

message-based multicomputers and shared memory multiprocessors. 

2.1.1 Message-Based Multicomputers 

In a message-based multicomputer, each processor has access only to its private, 

dedicated data memory. Each primitive element is a computer (processor-memory pair). 

Communication among computers is either via fixed paths or via some message switching 

mechanism. Data sharing is done by passing messages through these specialized communica­

tion channels. In addition to the data content, a message includes a header with information 

regarding the source, destination, and message type. Some information in the header can 

be omitted if it can be deduced implicitly from the communication channel used and the 
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time of arrival (handshaking communication protocol). Duplication of shared data, message 

packing, and message unpacking add to the communication overhead. 

Various communication network topology may be used in message-based systems. 

The Intel iPSC [Int86], the Ncubeften [HMSe86] and the Connection Machine [Hil86] use 

a hypercube topology, systolic arrays [Kun82] use various array structures to fit with the 

intended algorithm, and transputer [Whi85] based systems can be connected in any fashion 

with each processor having up to 4 neighbors. Descriptions and performance evaluations of 

message-based systems can be found in [RF87]. 

Message-based architectures are scalable to thousands of processors. The Intel 

iPSC/d7 is a seven dimensional hypercube with 128 processor nodes. Each node contains 

an 8MHz Intel80286 microprocessor, a 6MHz 80287 floating point coprocessor, 512K bytes 

of dynamic RAM, and 64K bytes of ROM. The Ncube/ten contains 1024 custom VLSI 

processors. The main reason for the scalability of message-based architectures is that the 

number of connections of each processor node to neighboring nodes is either constant or 

increases very slowly with respect to total the number of nodes. For example, each node in 

the hypercube has log2 ( n) number of connections, where n is the total number of nodes. 

Efficient parallel execution on a message-based system requires that the message 

are small with respect to amount of work done at each processor node, and thus data sharing 

is kept to a minimum. Furthermore, the algorithm used must be well mapped onto the 

network topology, since passing a message to a distant processor incurs the latency of going 

through intermediate processor nodes. Programming a message-based system requires great 

care in problem partitioning and allocation of the processors for solving these subproblems 

in paralleL Parallel programming on these systems may be difficult, especially when the 

interconnection network has to be considered explicitly [Dem82]. How to compile for efficient 

execution an arbitrary program not designed specifically for a particular interconnection 

network is an open issue. 

2.1.2 Shared Memory Multiprocessors 

In shared memory multiprocessors, each processor may access any memory lo­

cation. Memory may be organized in a "dance hall" fashion or distributed among the 

processors, as shown in figure 2.1. From an operating system perspective, the dance hall 

organization results in a uniform memory access (UMA), while the distributed organization 
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interconnection network 

"dance hall" shared memory P - processor 
M-memory 

interconnection network 

distributed shared memory 

Figure 2.1: Two Categories of Shared Memory Multiprocessors 

result in a non-uniform memory access (NUMA) [BGW89]. 

9 

In the "dance hall", each processor may directly access any memory location in 

fairly1 constant time. There is no local memory to each processor. Each processor may 

contain a local cache to speed up accesses of adjacent locations (spatial locality) and frequent 

accesses to the same location (temporal locality). In the context of this discussion, caches 

are viewed as special hardware managed buffers, and not as ordinary memory. From the 

processor viewpoint, variations in memory access times are due to cache misses, contention 

on the processor-to-memory interconnection network, and memory bank conflict. Many of 

today's commercial multiprocessors employ shared memory with local caches on a single bus. 

The Sequent Balance [TGF88], the Encore Multima.x [Enc85], and Alliant FX/8 [PM86] are 

among the bus-based shared memory multiprocessors. These systems are generally referred 

to as multis [Bel85]. 

In the distributed shared memory organization, each processor has a local mem­

ory which can be accessed in fast constant time. It may also go through an interconnection 

network to access the memory of other processors in fairly constant time, at a much greater 

latency than accessing its local memory. Examples of distributed shared memory multi­

processors include Cm* [Geh87], the IDM RP3 [GF 85], and the BBN Butterfly [CGS*85]. 

The BBN Butterfly GP1000 can support up to 128 processor nodes, each with 4 MBytes of 

memory and a Processor Node Controller (PNC) that manages all memory references. A 

1 infrequent cache misses and fast fetching of a. ca.che miss 



10 CHAPTER 2. MULTIPROCESSORS AND PARALLEL EXECUTION 

non-local memory access across the switch takes about 5 times longer than local memory 

access. 

Shared memory multiprocessors have a number of advantages over message-based 

multicomputers: 

• Efficient data sharing. Since all memory locations are visible to all processors, shared 

memory systems can efficiently support extensive data sharing in parallel execution. 

Passing data from one processor to another requires only a pointer to where the data 

are stored. 

• Flexible interprocessor communication. Interprocessor communication using shared 

memory is much more flexible than using messages. It can be done using software 

specified memory locations. Depending on the type of interconnection network used, 

broadcasting to multiple processors may be possible and would be much more efficient 

than point to point communication. 

• Ease of programming. Proper mapping of the problem partitions onto the multiple 

processors is less critical than in message-based systems, and more dynamic schedul­

ing may be done to balance the load on the processors. Given the structured topology 

of the processor nodes, scheduling in message-based systems is more static in nature 

(usually done by the programmer or by the compiler). This ease of programming also 

means that existing software can be compiled for parallel execution with little modi­

fications (particularly when compiling for uniform memory access multiprocessors). 

The performance of shared memory architectures depend heavily on the perfor­

mance of the interconnection network. As the number of processors increases, the intercon­

nection network becomes a bottleneck. Depending on the speed of the bus relative to the 

processor, the single bus can support from 4 to 32 processors before it saturates. Cross­

bars provide the highest bandwidth with the greatest hardware complexity (order of p x m, 

where p is the number of processors and m is the number of memory modules). With 

current technology, a bit-slice 16x32 crossbar can fit on a single chip [Sri88]. Multi-stage 

networks are less expensive than a full crossbar, but incur a network delay in the order of 

log( m) to go through the switch, assuming that the number of processors is less than the 

number of memory modules. 
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Compared to message-based systems, shared memory systems (particularly those 

with the "dance hall" organization) have two challenges to overcome: 

• Scalability. Shared memory systems are less scalable because the number of logical 

connections to neighboring nodes is n- 1, where n is the total number of processor 

nodes. Due to interconnection network contention, each new node can potentially 

block the others from accessing the shared memory. 

• Interconnection network complexity. To reduce network contention, more complex 

network switches are needed and thus the network complexity and cost are increased. 

However, the advantages of shared memory (particularly the ease of programming 

for a large class of algorithms) drive researchers to design for cost effective large scale shared 

memory systems. Such systems with coherent caches have been proposed for thousands of 

processors. These systems use a hierarchy of buses [Wil87a, Arc88, CGB89], a multidimen­

sional array of buses [GW88, CD90], or a hierarchy of crossbars [Sri89]. 

2.2 Parallel Execution on Multiprocessors 

Parallel processing on multiprocessors involves partitioning a problem for execution 

on two or more processors. This section examines the software aspect of parallel processing. 

The design of a parallel execution model usually includes the following two goals: 

1. to provide an easy-to-program environment that requires the user to know little about 

the underlying architecture, and 

2. to take full advantage of the multiprocessor system. 

The cost of software development is a substantial part of a computer system, and often 

exceeds the hardware cost. The first goal provides cost effective software development and 

portability across different machines in the same class of architectures. The second goal 

exploits the performance potential of the multiprocessor architecture. The following are 

issues and tradeoffs involved in parallel execution: 

• Specification of parallelism. A program may specified for parallel execution by us­

ing explicit annotations (e.g. parbegin--parend) or implicit parallel detection (e.g. 

vectorizing compilation and dataflow dependency analysis). 

• ~ 
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• Granularity. The length of time which a. program partition runs before terminating 

varies from a. few cycles (fine grain parallelism) to millions of cycles or more (very 

large grain parallelism). The exact size of each medium grained partition is often not 

known. For efficient execution, the grain size should be much larger than the creation, 

communication, and termination overhead. 

• Scheduling. Compared to distributed scheduling, centralized scheduling has more 

information for better load balancing, but may be a. bottleneck as the number of 

processors get to be large. The scheduler must take into account the underlying 

architecture, particularly the cost of task switching and task migration. The scheduler 

must also consider the data dependencies of the parallel tasks to quickly obtain the 

solution given the limited resources. 

• Data sharing. The degree of data. sharing among parallel tasks depend on the memory 

organization and the class of application programs. Some programs are computation 

intensive with few data. elements while others require scanning a large database for 

the solution. 

Up to this section, we have discussed parallel execution in quite general terms. 

From this point on, we will focus on the parallel execution of Prolog and its requirements 

for memory management. 

2.3 Prolog and Its Applications 

Prolog is a programming language which is based on the theoretical foundation of 

logic [Llo87]. Originated around 1970 from the University of Marseille, it has gained greater 

acceptance and popularity in recent years as a. very useful language for numerous artificial 

intelligence, symbolic processing, and other applications. It has been used successfully 

for natural language processing (PS87, Dah88, HHS88], programming language compilation 

[VR84, CVR86], structured analysis tools [Doc88], and computer aided design for electronic 

circuits [BCMD87b, Clo87, Rei87, Rei88]. In addition, it has been used in a number of 

knowledge representation and expert systems [IH88, Shi88, WMSW87], and has been found 

to be very useful as a hardware description and simulation language [BCMD87a]. A logic 

programming language, called KLl [KC87], has been chosen as the official language for the 

Fifth Generation Computer Project in Japan [FM83]. 
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As the usage of the language increases, the demand for faster implementations 

of Prolog also rapidly increases. While some researchers work to optimize Prolog com­

pilation and to devise more efficient sequential execution models, others are in search 

of efficient ways to exploit the great amount of potential parallelism in Prolog. Prolog 

naturally exhibits two types of medium grain parallelism: AND- and OR-parallelism. A 

number of parallel execution models have been proposed for Prolog. Some exploit only OR­

parallelism (Lin84, CH86, HCH87, War87a, War87b, DL087, BDL*88, LBD*88] or only 

AND-parallelism [Deg84, Her86, BR86, DeG87, Lin88, CVR88], while others exploit both 

types of parallelism [Con83, Bor84, Kal87, Fag87, BdKH*88, BSY88]. 

2.3.1 Prolog Terminology 

This subsection provides a very brief introduction to Prolog, intended to famil­

iarize "non-Prolog" readers with the language terminology, syntax, program structure, and 

execution semantics. This is the foundation for understanding the different types of par­

allelism that exist and how a parallel execution model may support them. A number of 

books are available on programming in Prolog [CM87, CC88, 5586]. Interested readers may 

consult them for a more detailed explanation of the language and programming techniques. 

Prolog programs and data are represented by terms. Terms may be simple (vari­

ables or constants) or compound (structures). Constants are numbers or atoms. Atoms 

begin with lower case letters and variables begin with capital letters. A structure consists 

of a functor, which is the name of the structure (represented by an atom) and its arity, and 

arguments. Each of the arguments of a structure is, in tum, a term. A list is a special case 

of a structure with the special list functor and two arguments, the car and the cdr (as in 

Lisp). 

A Prolog program consists of a query and one or more procedures (see figure 2.2). 

A procedure is defined by a set of clauses and it is executed by processing its clauses 

in sequence until one succeeds. If none of the clauses can be executed successfully, the 

procedure fails. The process by which a procedure tries successive clauses until one succeeds 

is called backtracking. It involves restoring the state of the machine to what it was before 

the clause was tried so that the next clause in the procedure can be tried. A clause is a 

complex term that consists of a head and optionally, a body. The head of a clause is also a 

term that has a functor (the name and arity of the functor uniquely identify the procedure 
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query 

?- m(X,b). 

head body 
I I r-~-----, 

m(X,Y) :- f(X), c(Y,X).] rule ,, 
arguments 

procedure f(j). 

L__j ,_j ____ _, 

't goals 

[ 

f(k). 

f(l).] unit clause 

atoms ...... 
c(a,k). 

c(b,j). 

Figure 2.2: Components of a Prolog Program 

of which the clause is a part) and zero or more arguments. The arguments of a clause head 

are also terms (simple or complex), and represent the formal parameters of the procedure. 

The body of a clause, if any, consists of one or more goals (procedure calls). Clauses that 

have no body are called unit clauses or facts; otherwise, they are referred to as rules. 

A clause succeeds when all the input arguments have been unified with the argu­

ments of the clause head and all the goals of the clause have been successfully executed. 

Unification is the process by which a set of substitutions or bindings of the variables in the 

two expressions being unified result in identical expressions. H no such set of substitutions 

exists, the unification fails. H a goal fails, an alternate solution to the previous goal is 

computed. Then the goal is executed again. H no other solution to the previous goal can be 

found, the goal fails and an alternate solution to the goal before that is computed. Thus, 

Prolog finds a solution to a query by a depth first search of the solution tree. A clause fails 

if a consistent solution for all of its goals cannot be found. 

Prolog, as a logic programming language, has the following combination of features 

that set it apart from other programming languages: 

• Logical, Dynamically Typed Variables. There is a concept of binding for Prolog vari-
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ables, in which an unbound variable gets attached to a single item. That item may be 

a simple value, and complex term, or even an unbound variable. The variable's type 

is dynamic: it changes according to the item it gets bound to. Each variable may get 

bound at most once, and is thus referred to as single-assignment. However, a bound 

variable may be unbound upon failure of the clause. From an implementor's point 

of view, single-assignment variables allow for a greater degree of parallelism while 

requiring more memory space. 

• Unification. This pattern matching, although with a very specific set of rules, is 

powerful enough for numerous uses in text processing and database queries. Hardware 

tagging support can significantly speed up unification [KTW*86, Dob87b, ABY*87], 

particularly for type checking of Prolog's dynamically typed variables. 

• Backtracking. Prolog's automatic support of non-determinism using backtracking 

makes it very easy to express non-deterministic algorithms in their natural forms. The 

cost of this support is for recording variable bindings (called trailing) which are undone 

upon backtracking. Using flow analysis, recently developed compiler techniques have 

made this cost insignificant [VR90]. 

2.4 Parallelism in Prolog 

In order to adopt logic programming for parallel execution, a number of parallel 

logic programming languages have been introduced to avoid the backtrack mechanism that 

exist in standard semantic of Prolog as defined in [CM87]. These languages are referred 

to as committed-choice languages. Some examples of committed-choice languages are Con­

current Prolog [Sha86], Parlog [CG86}, and Guarded Hom Clauses (GHC) [Ued85]. These 

languages are more suitable for operating system applications, while the standard seman­

tic of Prolog provides a more general purpose programming language with a wide range 

of applications [Llo87}. Therefore, our approach concentrates on exploiting parallelism in 

standard Prolog. 

With its simple syntax and regular structure, a Prolog program is inherently an 

AND /OR tree. Execution ofthe program is primarily a depth :first, left to right traversal of 

the tree nodes. All the sibling AND nodes are traversed depth :first, left to right, whereas an 

OR node is traversed only if all the siblings to the left of it had failed. Backtracking allows 
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for automatic exploration of previously untried alternatives. It is also the cause for a great 

deal of complications in efficient parallel implementation. For this reason, some researchers 

are looking into combining the features of Prolog and committed choice languages [HB88]. 

Figure 2.3 shows a Prolog program with its corresponding program tree. The 

arrows show the traversal of the nodes, which is equivalent to the execution of the program. 

The solid arrows show the forward execution, while the dashed arrows show backward 

execution. 

The work done at each node consists of unifying the calling parameters with the 

head arguments of the clause, and setting up the parameters for calls to its subgoals. In 

addition, the work in the body of the node may involve applying some functional primitives 

known as built-ins for arithmetic operations, input/output, data structure manipulations, 

and code alterations. 

2.4.1 AND-Parallelism 

Inspecting the program tree, it seems natural that the branches of the tree can 

be executed in parallel. This has been observed and studied by Conery [Con83] and oth­

ers [Deg84, Her86]. When the partitioning is done at a clause node, where calls to subgoals 

are to be done in parallel, it is known as AND-parallelism. Figure 2.4 shows the partitioning 

of the tree in Figure 2.3, where the spawned processes are separated from the root process 

with dashed lines. 

The main difficulty with AND-parallelism is the problem of binding conflict, where 

more than one AND subtree executing in parallel attempt to bind the same variable to dif­

ferent values (e.g., variable X in the figure above). A solution of this problem requires some 

synchronization mechanism for shared variables, in addition to some merging scheme for 

combining sets of variable bindings returned from the non-deterministic goals. Since such 

a scheme results in enormous run time overhead, a more constrained alternative, known 

as independent {restricted) AND-parallelism, is often chosen. This restriction requires that 

all subgoals to be executed in parallel must not attempt to bind a shared variable. This 

restriction can be ful:filled by either compile time analysis [Cha85], or by a run-time check 

[Deg84, Her86]. An alternative to independent AND-parallelism which does not require 

merging of answers is the producer-consumers approach [LM86, Lin88], where each vari­

able is designated one producer goal while the other goals are designated as consumers of 

• II 
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m(X,Y) :- f(X), c(Y,X). 

f(k). 

f(j). 

f(l). 

c(a,k). 

c(b ,j). 

~t/ 

OR nodes 

Figure 2.3: Prolog Program and Corresponding AND/ 0 R Tree 
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AND-parallel tasks 

Figure 2.4: AND-Parallel Tree 

the variable. A consumer goal must suspend until the producer goal of that variable has 

completed its execution. 

2.4.2 OR-Parallelism 

When the program execution is partitioned at a procedure node, with broken 

branches to clause nodes which show alternative clauses that give several solutions, the 

parallelism exploited is known as OR-parallelism. The task which executes one of the 

OR branches can continues with the next goal in the parent's clause. In figure 2.5, the 

task completing the first clause of f (X) continues with the next goal c (Y, X), with X now 

instantiated to the value k. Thus the results are passed down the execution tree and the 

final solutions are available at the leaf tasks. 

When OR-parallelism is combined with AND-parallelism, the results of the OR­

tasks may be passed back up to the parent AND-task. In figure 2.6, the goals f (X) and 

c(Y ,X) are executed in AND-tasks. OR-tasks are then spawned to execute the clauses off 

in parallel. The results of these OR-tasks are passed back to the parent task. The OR-tasks 

do not proceed with the next goal (c(Y,X)) because it is already being executed by an 

AND-task. This is referred to as containment by Fagin [Fag87]. 

OR-parallel clauses may share argument variables in the head, but bindings of 
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OR1)811111el tasks 

Figure 2.5: OR-Parallel Tree 

... 

c~·~· 
' t /' OR-parallel tasks 

Figure 2.6: AND-OR Parallel Tree 
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these arguments must be hidden from the ancestor nodes until that OR node is actually 

traversed (in the sequential semantic order). The challenge in implementing OR-parallelism 

is to resolve the binding conflicts in a space and time efficient manner. For example, the 

OR-tasks of the goal f (X) may attempt to bind X at the same time. Thus, each of these OR 

subtrees must contain a separate binding environment. Efficient handling of these binding 

environments are being studied by various researchers [War87b, DL087, CH86, Bor84, 

HCH87]. A simple simulation study by Cra.mmond [Cra85] provides preliminary indication 

that the hash window scheme [Bor84] yields the best performance. However, more recently 

work by Warren and researchers at Argonne National Lab have presented some promising 

hybrid schemes combining hash windows with binding arrays [War87a]. Explanations of 

these schemes are provided in section 3.4.5. 

2.4.3 Other Types of Parallelism 

Other types of parallelism have been identified for Prolog. Consider the following 

example: 

?- m(sC .. ), [_ __ ], X). 

m(s( ... ) , [ ___ ], X) :- a(l, X), b(X). (ml) 

a(l ,X) :- . . . (al) 

a(1,[3,5]) :- (a2) 

a(2 ,X) :- . . . (a3) 

b( 0). (bl) 

b([HIT]) :- ... (H), b(T). (b2) 

Stream-parallelism (Sin90, LP84, Mea83] exists when a producer goal can pass a 

stream of values (elements of a list) to the consumer goal in a pipelined fashion. In the 

example above, a(l,X) is the producer of X while b(X) is the consumer. a and b can be 

executed in parallel, with b operating on an element in the list X while a is producing the 

next element. 
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Search-parallelism allows the heads of all clauses in a procedure to be unified with 

a given subgoal. This can be viewed as a simplification of OR-parallelism. In the example 

above, the search for the clauses that can match with a ( 1 , X) can be carried on in parallel, 

resulting in the list of two clauses [(al), (a2)]. 

Unification-parallelism [Sin90, Cit88, Sin88] carries out the unification of the ar­

guments in the clause head in parallel. In the example above, the structure s ( ... ) and 

the list [_J in clause head of m1 can be unified with their calling arguments in the query 

m concurrently. 

Depth-parallelism [Sin90, Sin88, BG87] carries out the unification of the head of a 

clause concurrently with the unification of a su bgoal of the clause. In the example above, the 

unification of the arguments in m can be done concurrently with the unification of arguments 

in a. 

All types mentioned in this subsection explore parallelism at a finer grain, below 

the Prolog clause/procedure level (medium grain). They will not be discussed further since 

this dissertation concentrates on memory management for the clause/procedure level of 

parallelism. 

2.5 Processes and Tasks 

From an operating system level perspective, a process is an execution environment 

of a program, with its own address space. This is in accordance with the definition of a 

Unix process [QSP85], where there is a separate virtual address map for each process. Two 

or more processes may share a memory block only if their virtual addresses are mapped 

onto the same physical page. 

In this thesis, we use the term task to refer to a light-weight process that shares a 

global address space with other light-weight processes. A task contains only the execution 

state of the program (i.e., registers and stack pointers). Other similar terms are thread 

and chare [SKR88]. Tasks are spawned for concurrent exploration of the Prolog search 

tree. The language level notion of a task is the execution of a section of code (one or more 

continuous nodes in the tree), with a section of data which corresponds with that execution. 

Depending on the paths that tasks represent, they may be allowed to proceed in parallel, 

with occasional communication among each other. 
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2.6 Chapter Summary 

In this chapter, we discuss two general categories of multiple-processor systems: 

message-based multicomputers and shared memory multiprocessors. We focus our attention 

on shared memory multiprocessors because they have the following advantages over message­

based multicomputers: efficient data sharing, flexible interprocessor communication, and 

ease of programming. 

We also present Prolog, a logic programming language that has found wide use in 

natural language processing, expert systems, and many other applications involving sym­

bolic computation. We choose Prolog for our parallel execution and memory management 

support studies because of its intensive memory usage nature that require efficient memory 

management. In this dissertation, we focus on the memory management support for two 

types of medium grain parallelism in Prolog: AND-parallelism and OR-parallelism. 
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Chapter 3 

Memory Management: Issues and 

Past Solutions 

3.1 Issues in ~er.nory ~anager.nent 

"Memory management" is a broad term that covers numerous issues in managing 

the storage space available in a computer system. The complexity of memory management 

increases as the layers in the memory hierarchy increases. This chapter discusses the issues 

in uniprocessor and multiprocessor memory management, and reviews some approaches 

previously taken by researchers to solve them. 

Cost is a main consideration in the design of memory systems. It is often kept 

constant while tradeoffs are made to obtain the highest performance, namely the ability 

to access maximum amount of space in minimum amount of time. A memory hierarchy 

(figure 3.1) typically contains multiple layers of different types of storage devices to take 

ad vantage of the access time of fast devices (such as fast static memory) as well as the low 

cost, large space of slower devices (hard disks). The table in figure 3.1 shows typical speeds 

and costs of the various devices. The access times and prices are rough estimates based on 

September 1989 advertised prices. The points of interest are their access times and costs 

with respect to one another. At the highest level (shortest latency) of the memory, caches 

are kept close to processor speed. Caches are expensive because they use high speed memory 

chips and employ complex associative lookup. Caches also require storage space for address 

tags. At the other end, hard disks provide non-volatile storage and an enormous amount 
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I Device I Speed (ns) I Cost ($) I $/Mbyte I 
Static Memory (32 Kbyte) 15 400 12,500 

Dynamic Memory (2 Mbyte) 80 300 150 

Hard disk (100 MByte) 25,000 1000 10 

Figure 3.1: Memory Hierarchy and Storage Device Relative Speeds and Costs 

of memory space at very low cost (and the price/space ratio continues to drop). With new 

technologies emerging, such as a removable 256 Mbytes optical disk for $50 (not including 

the optical disk drive), more space is available at much lower cost (and faster access time). 

There are two key factors in memory management: space and time. Given a 

memory architecture with specified memory sizes and communication network structure, 

heuristics or algorithms are then developed to make efficient use of system resources. Re­

garding space, two aspects need to be considered: 

1. validity of data 

If the data stored in a given memory location becomes invalid (or will never be used 

again), that space may be reclaimed; otherwise, the data must be preserved. 

2. system addressability 

There is an upper limit to the size of memory that can be addressed. For fast access, 

this limit is dependent on the width of the address register and the datapath internal 

to the processor. Various segmentation schemes increase the addressability at the 

cost of loading and reloading segment registers, and limiting the address range that 
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can be accessed a.t any given time. For example, the VLSI-PLM processor [STN*88] 

ha.s a. 28-bit address register, but a. 29-bit address space. The most significant 29th 

bit specifies code space or data. space, and is generated by the microsequencer of the 

VLSI-PLM processor. 

The time factor depends pri:ma.rily on the locality of accesses. Cache misses, virtual memory 

page faults, a.nd remote accesses to memory module via. the communication network ca.n 

incur severe performance penalty. Compared to a. cache hit, a. cache miss is typica.lly 5 

times slower, a. remote memory access is 20 to 100 times slower (depending on the type of 

interconnection network), and a. page fault is 5000 to 20,000 times slower. 

3.2 Memory Management Techniques: A Historical Per­

spective 

3.2.1 Virtual Memory 

In the early days of computing, main memory wa.s very expensive, and thus wa.s 

typica.lly sma.ll (6 to 24 kilobytes for minicomputers in the 60's [BM82] and 4 to 48 kilo­

bytes for personal computers in the 70's [SBN82] compared to toda.y's several to tens of 

megabytes for personal workstations). Manual overlay wa.s a. commonly used technique, 

where the programmer explicitly swapped a. portion of data. stored in memory onto disk 

a.nd then swapped it back when needed. The introduction of virtual memory automated 

the disk swapping process, and freed the programmer from having to manage low level sys­

tem resources. Both manual overlay and virtual memory solves the problem of insufficient 

space for storing valid data.. 

Memory is used to store input and output data., a.s well a.s intermediate results. 

After the data. have been last used, they can be discarded a.nd the space where they were 

stored ma.y be reclaimed. Various garbage collection schemes scan the data. space to mark 

the data. that are still valid a.nd to pack them together to leave the empty space for other 

usage. Garbage collection ma.y be viewed a.s micro space reclamation since it operates a.t the 

single memory cell level. Dea.lloca.tion of a. segment of memory, described in the following 

section, can be viewed a.s macro space reclamation. 

3.2.2 Allocation Strategies 
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1. Static allocation 

global variables in C, Pascal, Fortran 

''static•• variables inC 

''COMMON'' variables in Fortran 

2. Explicit dynamic allocation 

via C functions ''malloc()•• and ''free()•• 

via Pascal functions ''new()''• ''mark()''• and ''release()'' 

3. Implicit dynamic allocation 

stack: C and Pascal activation frames for function/procedure 

control information, argument data, and local variables. 

heap: storage for Lisp and Prolog ''cons cells,•• and 

Prolog ''compound terms.•• 

Figure 3.2: Examples of Allocation Strategies 

Memory may be organized into bigger chunks for allocation and deallocation. 

Several allocation techniques have been devised to satisfy the needs of the programming 

paradigms and to support the programming language features. In general, there are three 

allocation strategies (see examples in Figure 3.2): 

1. Static allocation 

The compiler sets aside a fixed area of memory at compile time for use at run time. 

Unless otherwise managed, this space can only be used for the purpose specified at 

compile time and is never reclaimed for other usage. The advantage of static allocation 

is simplicity in implementation and zero run time overhead. 

2. Explicit dynamic allocation 

Memory management is done at run time by the programmer. In this strategy, the 

programmer explicitly requests a memory chunk of a specified size. Often, an allo­

cated memory chunk can be reclaimed only at the programmer's explicit instruction. 

Occasionally, an "intelligent" operating system may be able to reclaim this space. 

This strategy provides greater flexibility, but can be quite tedious and error prone. 
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3. Implicit dynamic allocation 

Memory management is done at run time by the system, without the programmer's 

direct specification. This general strategy follows a stricter discipline than explicit 

dynamic allocation, and is thus more robust and allows more to be done automatically. 

The two most common structures are the stack and the heap. The stack structure 

allows space to be managed in a rigid fashion: the last segment that was allocated is 

the first to be deallocated. This rigidity minimize the overhead of dynamic memory 

management. The heap structure can vary greatly in implementation, but it is always 

much less restrictive than the stack structure (allocation and deallocation can be in 

arbitrary order). A common characteristic in heaps is some sort of bookkeeping of 

the dynamic space usage, either explicitly with special memory management pointers 

to allocated areas and/or free areas (e.g., a free list), or implicitly by tracing through 

active data objects. This characteristic allows space to be partially or fully reclaimed. 

3.2.3 Data Organization and Memory Access Policies 

Average memory access time can be reduced by organizing data to increase locality. 

The stack structure exhibits greater locality than the heap structure. Tradeoff decisions can 

also be made on whether to copy or to share data. Copying data is advantageous if the 

cost of copying is offset by the time savings for faster accesses to the local copy of the data. 

Throughput can be improved by overlapping operations. For example, a process may be 

swapped out while waiting for a page fault to be serviced. 

3.3 Sequential Execution of Prolog 

3.3.1 Understanding Prolog Memory Requirements 

For memory management to be more "intelligent," more information is needed 

regarding the size of the data objects and the type of accesses that these data objects may 

have. This section examines specifically the storage requirements of a Prolog engine. 

As in any language, Prolog has three different entities that require storage: code, 

data, and control information. As shown by figure 2.2, a Prolog program consists of a query 

and a set of procedures, with each procedure containing one or more clauses. Prolog proce­

dures have two faces. In some cases, they are executable code. In other cases, they act as 
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data. stored in a. data. base, with the procedure name (or functor) as the index. In the most 

complex case, data. is manipulated and transformed into executable code. Assert 0 and 

retract() are Prolog builtin procedures that can modify the code database. Assert and 

retract present great implementation complexity. They involve symbol table management 

for on-the-fly compilation, efficiency of compilation and ofcode produced by on-the-fly com­

pilation, and proper linking with existing code for desired semantics. In this dissertation, 

we concentrate on the issue of memory management for data and control information, and 

do not handle assert and retract.1 We treat Prolog code as a static entity which cannot 

be modified at run time. Thus a segment of memory can be statically allocated for storing 

code. 

There are four major types of data objects in Prolog: variable, atom, list, and 

structure. V a.riables and atoms are of fixed length, usually require only one memory cell 

each (the cell for an atom contains a pointer to the string table). Lists and structures, 

on the other hand, can be arbitrarily large and are very dynamic in nature. These data 

objects must be retained as long as the program does not backtrack. Thus, a heap is deemed 

appropriate for providing dynamic storage for Prolog data objects. 

Two types of control structures are needed for Prolog. First, an activation frame 

is needed to store the return address at each procedure invocation. The pointer to the pre­

vious activation frame and local procedure variables are also stored in the activation frame. 

The backtracking feature of Prolog requires an alternate clause frame to store information 

regarding the next alternate clause to execute in case the current clause fails. The alternate 

clause frames behave in a last in first out manner, with the last alternate clause frame 

containing the first alternate clause to execute in case of failure. Thus, a stack is the most 

appropriate mechanism for storing alternate clause frames. 

With a. better understanding of storage requirements of Prolog, how can we best 

manage memory for sequential execution of Prolog? The following section presents one very 

well known answer. 

1 In place of assert/retract, we provide two Prolog builtins set/2 and aeeess/2, which can behave like 

assert and retract for a restricted class of Prolog procedures: the procedures with exactly one unit clause 

each. Many Prolog programs which use assert and retract to store into and retrieve from the database can 

be easily modified to use set and access instead. 
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3.3.2 The WAM Stack Model 

The Warren Abstract Machine (WAM) [War83] is an efficient engine for sequential 

execution of compiled Prolog code. It is the single most widely studied abstract machine 

for Prolog. The WAM has been simulated at the instruction level and register transfer 

level [Dob87b] and implemented in microcode on the general purpose machines such as 

the NCR/32-000 [FPSD85] and the VAX/8600 [JMP87]. Extensive performance studies 

have been conducted by many research teams [Dob87b, Tic87, TD87]. The Programmed 

Logic Machine (PLM) [Dob87b] is a specialized architecture developed at the University of 

California at Berkeley to support an extended WAM instruction set. The PLM has been 

built in TTL [DPD84] and VLSI [STN*88]. Other WAM-based architectures include the 

Xenologic X-1 [Dob87a] (which is the commercial successor of the PLM), the Knowledge 

Crunching Machine (KCM) [BBB*89], and PSI-II [NN87]. 

One of the most notable features of the WAM is its stack model for data storage, 

which allows for efficient space recovery upon backtracking. The WAM memory model 

consists of four stacks: the local stack, the global stack, the trail stack, and the push-down 

list (PDL ). The PDL is a small stack used for unification of nested lists and structures. Its 

use is only within a unify instruction and thus will not be included in the discussion of the 

major stacks. The PDL is on-chip in the VLSI-PLM [STN*88], the VLSI implementation 

of the PLM architecture. The other three major stacks together form a set of stacks, called 

a stack set [Her86]. 

The local stack contains the two types of frames described in the previous section. 

Alternate clause frames, called choicepoints, save the state of execution (argument registers 

and stack pointers) before trying one of several candidate clauses of a procedure. H the 

clause fails, the chokepoint is used to restore these registers and stack pointers before 

the next clause is executed. Activation frames, called environments, are similar to call 

frames in a traditional programming language, with storage allocated for local variables 

and procedure return pointer. Unlike traditional call frames, however, environments in 

Prolog cannot always be deallocated after the procedure succeeds since the procedure may 

be reinvoked to produce another solution. H a procedure has alternatives, there will be a 

choicepoint above the environment of the procedure call. 

The global stack is used to store dynamically allocated data structures (Prolog 

variables, atoms, lists and structures) built up by the program. In the PLM, the global 
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t allocated space l. · · · · 
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grows up 

stack base 
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Figure 3.3: Stack Usage Behavior 

Each up arrow represents the amount of space requested during execution. The sum of all 

up arrows is the total "allocated space." Each down arrow indicates the amount of space 

reclaimed upon backtracking. With the stack mechanism, much of the allocated space can 

be recovered and reallocated for new requests. 

stack is called the heap because access to data stored in the global stack is not in a strict 

last-in-first-out (LIFO) manner. The heap backtrack (HB) pointer marks the top of the 

global stack at the time that a choicepoint is allocated. Upon failure of a clause, the current 

top of the global stack pointer can be reset to the HB pointer, thus reclaiming all the space 

that was used by the failed clause. The backtracking feature of Prolog allows this special 

reclamation of space of a heap-like structure in a stack-like fashion. 

The trail is used for storing bindings made during execution of a clause. When 

that clause fails, all variables bound in that clause are reset to unbound, and the space used 

to trail these bindings are recovered when the top of trail pointer is moved back to where 

it was before the execution of the clause. 

The WAM's multiple stack mechanism is also present in several other Prolog en­

gines [Yok84, CloSS, KTW*86]. For non-deterministic programs which perform extensive 

backtracking, the WAM stack mechanism is extremely efficient, allocating and deallocating 

space at minimal cost. A study by Touati and Hama [TH88] indicated that for some pro-
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grams, the maximum stack space used is less than 10% of the total allocated space [TH88] 

(figure 3. 3). Thus, over 90% is automatically reclaimed by the stack mechanism upon back­

tracking, without the need for garbage collection. For deterministic programs which rarely 

backtrack, this automatic space reclamation is much less, but is still significant. In the best 

case, the stack grows to a. maximum size of 48% of the allocated space. (In the worst case, 

the stack grows to maximum size of 100% of the allocated space, thus requiring garbage 

collection.) 

Within this stack mechanism for sequential execution of Prolog, several tra.deoffs 

can be ma.de tha.t affect memory space usage. One such tradeoff is structure sharing versus 

structure copying. Under structure sharing, the compound term (a. Prolog structure), is 

represented as a. pair of pointers (pointing to the code of the structure and an instance of 

the binding environment) which are used to access structure value. Variables with same 

structure value would contain the sa.me pointers, thus sharing tha.t structure value. Struc­

ture copying makes a. duplicate copy of the structure for ea.ch instance of the variable. 

Structure sharing allows fast building of compound terms, but requires more time to access 

them. Discussions of structure sharing versus structure copying and other details in memory 

management for sequential implementations of Prolog can be found in [Mel82] and [Bru82]. 

3.4 Parallel Execution of Prolog 

3.4.1 Memory Requirements 

Prolog tasks (described in section 2.4) are potentially numerous since ea.ch task 

is used for the traversal of a. small section of the execution tree. The number of tasks is 

inversely proportional to the granularity (or size) of each task. This granularity is difficult 

to control statically and ma.y be expensive to control dynamically. The tasks ma.y also ta.ke 

up a. widely varying amount of memory space. Figures 2.4, 2.5, and 2.6 demonstrate this 

potential variance. In figure 2.6, the AND-tasks and OR-tasks are of different sizes (in 

terms of number of nodes in the tree). 

Because of the support for non-determinism in Prolog, a. task needs to retain its 

state for future backtracking. It also needs to preserve its da.ta. space if the va.ria.ble bindings 

are passed by pointers to the da.ta. space and not by copying. This ma.y result in a. very large 

number of tasks which ma.y never be executed again. Depending on how the da.ta space for 
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Figure 3.4: Tasks in Global Memory Space 

the task is allocated, some address space could be tied up unnecessarily when it could be 

used for spawning new tasks or for running existing tasks. 

Figure 3.4 gives a conceptual view of tasks existing in memory, with each task 

having a control block and an associated data space. To avoid the hlgh overhead of copying, 

the tasks may share access to each other's task space via passed pointers. A global address 

space is needed to efficiently implement this extensive sharing. The question at hand is: 

How can the address space be adequately distributed among the tasks and globally managed 

for efficient parallel execution of Prolog? 

We are interested in obtaining a single-solution for a Prolog program, where the 

OR nodes of the execution tree are partially traversed to obtain only one solution. This 

is in contrast to all-solutions, where all nodes in the execution tree are always explored 

for all possible answers. The memory management scheme should effectively support this 

single-solution objective. 
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3.4.2 Scheduling Effects on Memory Behavior 

Task scheduling is a very important factor in the resulting memory behavior. The 

scheduler, either centralized or distributed, affects memory behavior in two ways: 

• task execution order. The scheduler determines which task gets to execute first. 

Since each task represents a different part of the overall execution tree, the order of 

execution affects the spatial locality of the dataspaces of the tasks. From space recla­

mation viewpoint, it is desirable to have close together the dataspaces of AND-tasks in 

closely related subtrees. From a parallel execution viewpoint, these dataspaces should 

be far enough apart to not introduce any extraneous memory contention (different 

cache block, different memory module). 

• processor assignment. The scheduler decides which processor will execute a task. 

From a cache performance viewpoint, tasks that share data should be executed in the 

same processor. From parallel execution viewpoint, tasks that can execute in parallel 

should be assigned to different processors. 

Another issue with scheduling Prolog tasks is the management of potentially use­

less work. With AND-parallelism only, work done by sibling AND-tasks to the right of an 

AND-task is potentially useless if that AND-task fails. With single solution OR-parallelism, 

many OR-tasks may do useless work if their results do not affect the final solution. And 

yet, these OR-tasks take up processing power as well as storage space. A good scheduler 

should minimize the amount of useless work while maximizing the amount of parallelism. 

Numerous parallel execution models have been proposed for Prolog [Con83, Her86, 

Kal87, War87b, BSY88]. Some have been simulated while others have been implemented on 

multiprocessors. From a memory management viewpoint, these models can be classified into 

two categories: models for message based (non-shared memory) multicomputers and models 

for shared memory multiprocessors. The next two sections will review a number of memory 

management schemes previously proposed. The focus of this thesis is on shared memory 

multiprocessors. Message based models are briefly covered for the sake of completeness. 

3.4.3 Message-Based Models 

A number of models for parallel execution of Prolog have been proposed for 

message-based multicomputers. This section briefly reviews the memory management 
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scheme for each of these execution models. 

"Closed Environment" in OPAL 

The closed environment model [Con87] was developed for OR-parallelism in OPAL 

(Oregon PArallel Logic), which is an implementationofthe AND/OR Process Model[Con83]. 

In this scheme, an activation frame for a clause is extended to contain a copy of the unbound 

variables from the ancestor nodes. The parent frame is copied into the child process, and a 

closing algorithm is applied to a frame to remove all links from a frame to ancestor frames. 

All references can be resolved within the two frames used in unification. 

"Closed Tuple" in the Reduce-OR Model 

The Reduce-OR model [Kal87] performs a tuple closing to remove all references 

outside of a frame. Unbound variables are duplicated, while ground terms may be shared. 

Details of the two-phase unification algorithm is provided in [KRS88]. There are similar­

ities between this scheme and the closed environment scheme described above. A major 

difference is that this memory model is designed for both AND- and OR-parallelism while 

the closed environment model as described in [Con87] is suitable for OR-parallelism only. 

The Reduce-OR model has been implemented on various shared memory multiprocessors 

(Alliant FX/8, Encore Multimax, and Sequent Balance) and a message-based machine (In­

tel iPSC/2 hypercube) [SKR88]. In the shared memory systems, optimizations are made to 

reduce the amount of copying. 

Local Bindings in the Limited-OR/Restricted-AND Model 

The Limited-OR/Restricted-AND Parallelism (LORAP) [BSY88] is another model 

for both AND- and OR-parallelism designed for a distributed memory system. An emulation 

of the LORAP abstract machine has been implemented on a network of Transputers with a 

wrap-around mesh topology. The LORAP-abstract machine contains multiple processors, 

each with its own local memory. Interprocessor communication is done by passing messages 

over dedicated links between two processors. A number of processes are statically created 

for each processor. A cell is created in the child process for each unbound variable in the 

parent process, with links to the parent variable. A child may directly bind its own copy of 

the variable. When passing back the results, the values of the bound variables in the child 

process are unified into the parent process. 
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Figure 3.5: Conceptual View of a Cactus Stack 

3.4.4 Shared Memory Models 

As discussed in section 3.3.2, the stack is an efficient mechanism for reclaiming 

memory upon backtracking. Many parallel models use an extended stack mechanism, called 

the cactus stack, for parallel execution of Prolog. Figure 3.5 shows a conceptual view of the 

cactus stack, which is a tree structure with a stack at each node. Execution begins with 

the root stack. A new stack is created for each task spawned and is branched out from the 

current stack. Depending on the model, execution on the parent stack can either suspend 

or continue in parallel with execution on the child stack. 

Implementation of a stack requires a segment of memory, a stack base pointer, 

and a stack top pointer. In actual implementation, each branch of the conceptual cactus 

stack may be an independent stack or several branches may share the same stack, since all 

branches are not active during the same period of time. The WAM-based parallel execution 

models designed for shared memory systems use three general types of memory models: a 

stack set for each processor, a stack set for each task, and a stack set for one or more tasks. 

In the first type, multiple tasks are allowed to share the same stack set, interleaving the data 

space of each task onto the same stack set (as shown in figure 9.6). Execution models that 
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Figure 3.6: Stack Set per Processor Memory Model 

use this memory model include RAP-WAM [Her86] and APEX [Lin88] for AND-parallelism, 

and the SRI Model [War87b] and Aurora [LBD*88] for OR-parallelism. Aurora has been 

implemented on both a single-bus shared memory system (Sequent Balance) [Sze89] and a 

distributed shared memory system (Butterfly GPlOOO) [Mud89]. 

To prevent leaving holes2 in a stack and to ensure that the space of the executing 

task is at the top of the stack, various ordering schemes are used in the scheduling of the 

tasks for parallel execution at the cost of some restriction on parallelism (e.g., the various 

steal rules described in [Bor84, Her86, Lin88]). 

In a stack set for each task, the task space is independent of the processors (shown 

in figure 3. 7), thus allowing for more flexible scheduling and a higher degree of parallelism. 

For example, the PPP [Fag87] assign one stack set to each AND-task and each OR-task. 

The entire stack set can be discarded when a task terminates. 

The third type of memory model is a relaxation of the first type, allowing for 

more stack sets than the number of processors. This relaxation has been shown to in­

crease the degree of parallelism, resulting in faster execution in APEX [Lin88]. Borgwardt's 

model [Bor84] for AND-, OR-, and stream parallelism also falls under this category, allowing 

the AND-tasks to share the stack set, while creating a new stack for each OR-task. 

2 A hole is the spa.ce previously occupied by a task that has terminated but cannot be reclaimed since it 
lies below the space of an a.ctive task. 
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Figure 3. 7: Stack Set per Task Memory Model 

3.4.5 Or-Parallel Binding Environments 

Or-parallelism introduces a special memory requirement. Sibling tasks that tra­

verse alternative OR-branches in parallel (called or-tasks [Fag87]) may attempt to bind the 

same variable to different values, with one of them represent the current result and the 

others represent alternative solutions. This binding must be stored such that it is not visi­

ble to sibling or-tasks, and is visible only to the parent's task when it is requested. In the 

message-based models (section 3.4.3), each task makes the bindings in its own local space 

and the results are copied back to the parent task when needed. In the shared memory mod­

els, various schemes have been proposed to solve the Or-parallel binding problem. These 

schemes are discussed below. This section is intended to give the reader an overview of the 

many possibilities. This covers the comparative studies by Crammond (Cra85], Ciepielewski 

and Hausman [CH86] and Warren (War87a]. 

Binding List with Time Stamps 

In Tinker and Lindstrom's [TL87] implementation of an Or-parallel Prolog on the 

BBN Butterfly™, there is a binding heap in each processor. Time stamps are used for 
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chokepoints (to indicate the relative time of chokepoint creation) and for value cells (to 

indicate relative time of binding), and are issued locally on each processor. Bindings for the 

same variable are made in each processor's binding heap, but are linked together to form a 

binding list. There is an "ancestor stack" on each processor to keep a history of computation 

(e.g., processor 1 is an ancestor of processor 2), used to determine the appropriate value in 

the binding list. 

Advantages: Because time stamps are used to determine the appropriate binding 

for the requesting processor, no unwinding upon failure is needed and thus no trail is kept 

for the bindings. Task migration incurs low to medium overhead. Only the ancestor stack 

and the information in the choicepoin t need to be copied to the new processor. 

Disadvantages: Time stamps cost extra memory and time (but have uses in intel­

ligent backtracking and tracing for debugging) (MU86]. Dereferencing requires traversing 

the binding list, which can be expensive. It is bounded by the smaller of the number of 

processors and the number of bindings. Major drawback of the linked-list method is that 

value cells on the binding heap that become unused cannot be recovered. 

Hash Windows 

Borgwardt's scheme (Bor84] creates a hash table (or window) in the global stack 

of each Or-task. Each entry in the window contains an (address, value] pair. When a task 

binds an unbound variable inherited from its parent, the value is stored in the hash window 

at the hash address of the unbound variable in the parent's stack. Hash tables of parent 

and child are linked into a linear list. When dereferencing, a task first looks into its own 

hash table. If not found, it recursively searches up the chain to look in the parent's hash 

window. Other execution model that also use hash windows include the PPP (Fag87], the 

Argonne Model (SW87, War87a], and PEPSys (BdKH*88]. 

Advantages: Since hash chain contains only descendants of one another while the 

binding list may contain bindings of siblings. Ancestor relationship is implicit in the hash 

chain, no separate ancestor stack is needed as in binding list. 

Disadvantages: There is extra. complexity involved in handling hash collisions and 

hash window overflow. Furthermore, the length of the hash window chain is unbounded. To 

reduce the access time, the Argonne Model has the concept of a. "favored" binding, where 

each shared variable is associated with a processor. This processor may bind the variable in 

place with a special bit to indicate that the binding is only relevant to the favored processor. 
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Unfavored bindings are stored in the hash window. The favored bindings may be accessed 

in fast constant time. The Manchester-Argonne Model [War87a] proposes the merging of 

parent and child hash windows when all except one Or-paths have been explored. 

Variations: The hash window scheme contains many variations. First, all unbound 

variables could be copied into the child's hash window, making the first dereference very 

fast. Second, if a bound variable is found in the parent's hash window, it could be duplicated 

in the child's hash window to save time on subsequent searches. Both of these techniques 

increases the size of the hash window, and the amount of time saved depends on the access 

frequency of the variable by that Or-task. 

Variable Importation 

In Lindstrom's variable importation scheme [Lin84], each task contains a local 

variables vector. Unbound variables from the parent task are imported into the child's task 

via an import mapping vector equal in size to the parent's variables vector, and additional 

slots are created in the local variables vector to store bindings for the imported variables. 

Upon termination of the child task, a new variables vector is created for the parent task, 

with the previously imported unbound variables updated with new bindings and new slots 

created for unbound variables in the child task. An export mapping vector is used to export 

unbound variables from the child task to the parent's task. 

Advantages: Dereferencing requires at most a two level search, in the local task or 

the parent's task. Thus, memory accesses have high locality of reference, especially since 

memory writes are done only on the local task. 

Disadvantages: The algorithms to import and export variables are complex and 

can be expensive. 

Directory Tree 

In the basic model of the directory tree proposed by Ciepielewski, Haridi and 

Hausman [CH83, CH86], the binding environment of each task contains a directory pointing 

to a set of context8 (activation records) containing the values. The address of each variable 

is a triple: [directory address, context offset, variable offset]. When a clause is invoked, 

a new context is created and its address is placed in the task directory. When a child 

task is spawned, a new directory is created. The parent's directory is scanned. References 
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to contexts with no unbound variables (committed contexts) a.re duplicated in the child's 

directory, thus allowing the child to sha.re the parent's contexts. Contexts with unbound 

variables (uncommitted contexts) a.re copied into the child's local spa.ce. 

Variations: There a.re a. number of va.ria.tions to the basic model. They a.re as 

follows: 

• Delayed context copying. The copying of uncommitted contexts can be delayed until 

the context is first accessed. This avoids copying contexts tha.t are never used. 

• Copy on read. When a. (committed or uncommitted) context is rea.d, it can be copied 

into the local task to increase locality for future a.ccesses, incurring the extra. cost of 

copying committed context. 

• Directory tree. The copying of the entries in the parent's directory into the child's 

directory is delayed. When first created, the child's directory conta.ins pointer to the 

parent's directory. Using the local context strategy, the child's directory also gets the 

reference of the most recently created context in the pa.rent's directory. 

• Hashing on contexts. The directories are of a. fixed size and a. hash function is used to 

enter context references into the directories. 

• Hashing on variables. In this scheme, the values a.re stored directly in the directories, 

as in Borgwardt's hash window scheme (previously described). 

Ciepielewski and Hausman simulated the various combinations of the variations 

described above for both a dance hall and a. distributed shared memory multiprocessors. 

The general conclusion dra.wn by them is tha.t [CH86, pa.ge 254]: 

"the stra.ightforwa.rd implementation [with delayed copy and no copy on rea.d] is 

good when the search tree is shallow (chea.p process creation), distance between 

branching point is large (the sa.me directory is used under several unifications), 

many variables in the sa.me context a.re used (smaller copying overhead per 

variable), and finally when contexts are small (small copying overhead)." 

When the opposite conditions hold true, hashing on variables performs better than the 

other variations. 

Versions Vector 
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Hausman, Ciepelewski, and Haridi also proposed another storage model for Or­

parallel execution, called the Versions Vector model [HCH87]. In this model, a. vector of 

size equal to the number of processors is created for each shared variable. To bind a. shared 

variable, the processor puts the value in the appropriate slot of the versions vector and enter 

the variable address into the trail stack. In one aspect, this scheme may be viewed as the 

binding list of Tinker and Lindstrom's model combined into a vector form. However, the 

versions vector WAM uses the trail instead of time stamps. 

This scheme allows fast, constant time look up but requires more storage space 

and expensive task switching. When a processor switches to a. different path of the search 

tree, variables in the old path needs to be untrailed and variables on the new path need 

to be installed. The paths are the segments from the old node and the new node up to a 

common ancestor node. Two optimizations are made to reduce this task switch cost. First, 

promotion copies the bindings in some version vectors to the original stack position. Sub­

sequent dereferences will find the variable bound in place. And second, delayed installation 

postpones the installation of variables in the new path until they are accessed. 

Binding Array 

The Binding Array model, independently proposed by D.S. Warren [War84] and 

D.H.D. Warren [War87b] 3 , allows fast access time a.t the cost of slower task switching time. 

In this scheme, each task contains a binding list (called fonJJard list in [War84]). When a 

variable in an ancestor's task is bound, the [address, value] pair is entered into the binding 

list. Each processor contains a buffer, called the binding array, which contains all shared 

variables (bound and unbound) along the path on which the processor is exploring. The 

binding array is updated when new bindings are made or when the processor task switches 

to a different path in the tree. 

This model allows fast access to the variables at the cost of task switch time. 

Whereas the Versions Vector model keeps one versions vector for each variable, this models 

keeps one binding array of several variables for each processor. Thus this scheme has greater 

locality and does not have the potential synchronization conflict which exists when several 

processors attempt to bind the same variable. As in the Versions Vector model, the task 

switch overhead can be reduced by keeping the task switching to adjacent nodes. 

3 D.H.D. Wa.rren reportedly formulated the binding a.rray concept while at SRI in 1983, but did not 
publish until much later. 
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3.5 Static Partitioning of Globally Shared Space 

In the shared memory models described in section 3.4.4, there are a number of 

stacks for each task or each group of tasks. A straightforward method of managing the 

globally shared address space is static partitioning. The globally shared address space is 

divided into equal partitions, one for each stack set. The space for each stack set is further 

subdivided into space for each of the stacks. Thus the space of each stack is inversely 

proportional to the number of stack sets. When this number is small, the space allocated 

to each stack is sufficiently large that overflow would rarely occur. When the number of 

stack sets is very large, the stack space is very small and thus the chance of stack overflow 

is greatly increased. This is particularly true of the stack-set-per-task models, such as the 

PPP Execution Model [Fag87]. In the PPP execution model, tens of thousands of tasks 

may be spawned over the life time of the program to exploit the medium grain parallelism. 

Many of these tasks will terminate, giving up their spaces for future tasks. However, many 

others will go into the sleeping state, holding on to their execution state and data spaces 

for potential future backtracking. These sleeping tasks accumulate over time, tying up 

statically assigned but unused memory space that could be used to spawn new tasks. The 

PPP execution model takes the simple approach of reverting to sequential execution when 

no more space is available for spawning new tasks. 

3.6 Solving the Problems of Static Partitioning 

Three well known techniques may be used individually or together to reduce the 

problems of static partitioning. While they are very useful for some situations, they each 

have shortcomings of their own. This section discusses their advantages and disadvantages. 

3.6.1 Virtual Memory 

Extending the virtual memory space does not solve the problems of static parti­

tioning, although it can reduce the chance of overflow. The globally shared address space 

can be extended up to the width of processor's memory address register and width of the 

internal processor datapath (it would be too inefficient to require multiple cycles to transfer 

pointer data). Mappings of virtual to real addresses are kept in page tables, and hardware 

support is needed for address translations and for page table caching. Virtual memory in-
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creases the complexity of processor, cache, and bus design. Larger virtual addresses require 

a wider address bus (for virtual addressed caches) and greater bus bandwidth (for pointer 

data), and this extra cost and complexity does contribute to performance. The virtual ad­

dress space, which is typically 32-bit in present technology, may even be insufficient when it 

is divided for a very large number of tasks. Overflow may still occur in one partition when 

its statically allocated space is exceeded. 

Virtual memory is best for the cases where the actually used space is larger than 

the available physical memory (and disk space is used to fill the gap), where access to 

certain address spaces is restricted, or where usage of the virtual address space is very 

sparse. The memory management problem described in this paper is quite different. The 

space allocated for a stack does not actually get used until data is pushed onto the stack. 

Much of the address space statically allocated to a task remains unused, but unavailable 

for use by other tasks. 

Segmentation techniques that use a segment register (or a segment table) to extend 

the global address space do not extend the shared address space, since not all segments are 

accessible at any given time, without reloading the segment base registers. For example, 

the SPUR multiprocessor system [HEL*86] has a 32-bit process virtual address (PVA) and 

a 40-bit global virtual address. The top two bits of the PVA are used as an index into a 

4-entry segment table. Thus at any given time a process may access at most 4 segments. 

3.6.2 Garbage Collection 

Space containing inactive data which are no longer accessible may be reclaimed 

by garbage collection. Various mark and compact techniques have been effectively used to 

garbage collect the global stack of the WAM [PBW85, ACHS88, TH88]. However, parallel 

garbage collection is very difficult to perform efficiently. Garbage collectors for parallel 

systems generally fall into two categories [Zor89]: on-the-fly and stop-and-copy. On-the­

fly garbage collection algorithms allow collector processes and user processes to execute 

concurrently, while stop-and-copy algorithms suspend all processors during collection. The 

disadvantage of on-the-:fty collection is that collector and user processes must be carefully 

synchronized for correct execution. In the simplest but slowest stop-and-copy scheme, 

garbage collection is performed by only one processor. In the faster schemes, garbage col­

lection is performed by several processors running in parallel. In any case, garbage collection 
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does not completely solve the space allocation problem. If the statically partitioned task 

space containing valid data is exceeded, it can not be further compacted. Furthermore, if a 

task terminates in the near future, its entire space can be quickly discarded. In this case, 

the time spent to garbage collect before the task terminates can be saved by obtaining new 

free space and delaying garbage collection until no more free space is available. 

3.6.3 Copy When Overflow 

When a stack overflows, a larger area of free space may be used to copy over the 

old stack. The complexity and cost of this operation are similar to those of parallel garbage 

collection, since the pointer data must be updated to point to new addresses. Furthermore, 

copy-when-overflow does not deal with the underflow problem. When the stack usage 

shrinks, the unused space on top of the stack remains allocated to that stack. 

3.6.4 Dynamic Allocation 

Dynamic allocation may be used in place of static partitioning to adapt to the 

changing memory requirements of the tasks. In some cases, it may stand alone as the 

memory management technique for parallel execution. It may also be integrated with one 

or more of the three techniques described above for more complete memory management. In 

the next chapter, we will describe a scheme for dynamic allocation and deallocation which 

allows for more efficient sharing of the global address space. 

3. 7 Chapter Summary 

In general, memory management has two aspects: space and time. Sufficient 

space must be allocated to where it is needed and reclaimed when it becomes unused. The 

allocation, deallocation, and data access times should also be minimized. For sequential 

execution of Prolog, the stack structure is an efficient memory management mechanism 

because space can be quickly reclaimed upon backtracking. For parallel execution, the 

cactus stack is a conceptual memory model that allows parallel tasks to share data with 

their ancestors. Each branch of the cactus stack is the local data space of a task. (A global 

address space can efficiently support the sharing of data among the medium grain, parallel 

tasks.) 
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In actual implementation, tasks executing in the same processor may share a com­

mon stack, or each task may have its own stack. The first scheme restricts parallelism for 

more efficient reclaiming of space, while the second scheme has a serious problem with space 

allocation. As the number of stacks increase, the stacks are much more likely to overflow as 

the shared space is partitioned into smaller segments (under static partitioning). Various 

techniques may be used to reduce this problem. They include: virtual memory, segmen­

tation, garbage collection, and copy when overflow. The advantages and disadvantages 

of these techniques were discussed in section 3.5. In the next chapter, we will present a 

dynamic allocation scheme that allows for efficient sharing of the global address space. 
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Chapter 4 

ELPS: The Explicitly Linked 

Paging Stack 

4.1 General Model 

The schemes previously described maintain a contiguous address space for each 

stack. An alternative would be to allocate address space in small ranges as needed, and link­

ing these segments to form a conceptual stack. This chapter presents such a scheme, called 

ELPS (Explicitly Linked Paging Stack), which is basically a heap management mechanism 

adapted to provide dynamically sized stacks. 

The concept of linked segments of memory is a classic one. Operating systems 

manage pools of free pages to be allocated to user processes. Support libraries for the 

C programming language contain memory allocation/deallocation functions for storage of 

dynamic data. One important distinction is that in these memory management support, 

allocation and deallocation of space must be explicitly requested by the programmer. ELPS 

provides automatic (implicit) memory management support for stacks in a parallel execution 

environment. 

4.1.1 Page Partitioning 

In ELPS, the globally shared address space is divided into many small (thousands 

of words) chunks of equal size, called pages. Since it is difficult to determine at compile 

time (or task creation time) how much space a task will need, equal sized chunks are 
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Figure 4.1: Fix-sized versus ELPS Variable-sized Stacks 

adequate and require less bookkeeping than variable sized chunks. Each task may need one 

or more stacks. Initially, one page is allocated to each stack. The use of the stack occurs 

in the usual fashion, with the top of stack pointer being modified at each push or pop 

operation. As the stack overflows, additional pages are allocated and linked with existing 

pages. As the stacks underflows into a page below, the page on top can be unlinked and put 

back into the free-page-list. In virtual memory, the mapping of a contiguous virtual space 

onto discontiguous physical pages is implicit in that a hardware mechanism automatically 

translates every virtual address into a physical one. The ELPS links are explicit in that no 

address translation is required. If it is implemented on top of virtual memory, then the links 

are virtual addresses. If there is no virtual memory, then the links are physical addresses. 

4.1.2 Link Management 

Figure 4.1 compares fix-sized stacks with ELPS variable-sized stacks. The free 

pages are linked together in the free-page-list. A processor requesting for a free page must 

lock the head of the list. To reduce contention for the lock, one free-page-list may be kept for 

each processor and a processor may be allowed to pick up a page from another processor's 
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free-page-list. Each page has two links, pointing to the page above and the page below it in 

the stack. Each page may also contain additional information regarding the page, such as 

page size or relative ordering of pages in a stack. The links and information fields may be 

stored separately in the page itself or combined together in a table. Figure ~ .! shows two 

possible implementations. In both implementations, an address consists of two parts: the 

page number p and an offset to the data area d. In the first implementation (figure 4.2(a)), 

the links are stored together with the data in ea~h page. In the second implementation 

(figure 4.2(b) ), the links are collected in a central table, separate from data storage. An 

indexing scheme is needed to access the link table. We choose to implement the first scheme 

for the following reasons: 

• Since the links for each page are accessed only by the owner task, distributed link 

storage allow interference free access to the links by parallel tasks, while centralized 

storage introduce unnecessary contention on the link table. 

• Having the links together with the data would provide better cache performance. A 

task that accesses data at the bottom of a page is more likely to be the owner of that 

page, and thus would also need to access the links for that page. On the other hand, 

the centralized scheme would require the links of each page to be stored in a separate 

cache blocks to avoid extraneous contention on the cache block, thus wasting much of 

the space in each cache block. 

4.2 Possible Implementations 

There are three facets to the implementation of ELPS: (1) overflow and underflow 

detection, (2) overflow and underflow handling, and (3) data access. This section discusses 

the tradeoffs among the different possible implementations. 

4.2.1 Overflow and Underflow Detection 

Detection may be done purely in software or with hardware support. Software 

detection requires checking the value of the top of stack pointer after it is updated, but 

before any data is written into the stack. Should overflow (or underflow) occur, a simple 

subroutine call can be used to activate the overflow (or underflow) handler. The time cost 

of software detection depends on the frequency of the updates to the top of stack pointer. 
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Figure 4.2: Two Link Storage Schemes for ELPS 

Hardware support can be used to monitor access to a stack area or changes to 

the stack pointer. A special memory area may be designed to cause a trap to the overflow 

handler when it is written into. The PSI-II architecture (NN87] supports such a scheme, 

designating a part of memory at the top of the stack as the gray page. H all writes are 

restricted to the top of the stack, a write to outside the current page may be detected for 

underflow (locations above the top of the stack are not valid). In the WAM model, writes 

may occur to the middle of stack (e.g., variable bindings), and thus the gray page scheme 

can not handle underflow. 

An alternative is to constantly monitor the value of the top of stack pointer, and 

generate a trap when it falls outside of the page. However, this can only work when the 

stack pointer is changed before new data is put into it. Depending on when the overflow 

signal becomes active, the system must be able to undo the stack operation that cause the 

overflow, and repeat it after a new page has been added to the stack and the top of stack 

pointer adjusted to point to the new page. 
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4.2.2 Overflow and Underflow Handling 

Overflow handling involves requesting a page from the free-page-list and linking 

it to the existing pages. The top of stack pointer is updated to point to the bottom of 

the data area of the new page. Allocation of new pages may be done on demand (when 

the overflow occurs) or before the overflow can occur. On-demand allocation is simpler to 

implement and is as good or better than pre-allocation, considering the relatively low cost 

of overflow handling in ELPS and dynamic nature of stack space usage. 

Underflow handling involves unlinking a page at the top of the stack and putting 

it back into the free-page-list. Deallocation may be done immediately when underflow 

occurs, or delayed until the free-page-list is empty (lazy deallocation). At this time, normal 

execution are suspended and processing power is used to scan the stacks for free pages not 

yet released. Lazy deallocation has the advantage that should the stack overflow again, 

request for a new page is not needed. 

4.2.3 Data Access 

By not allowing contiguous data objects to cross a page boundary, accessing data 

in an ELPS stack is identical to that of a contiguous stack. Contiguous objects such as 

activation records and data structures can be accessed using a base address and the field 

offset. The page size should be chosen to be much larger than the largest data structure. 

A very large data structure must be broken into smaller nested structures, with pointers 

from the main structure into the substructures. For linked objects such as lists, different 

elements may be stored in different pages, connected together by the links. 

4.2.4 Address Comparison 

Address comparison is often done to decide the relative positions of two data 

objects on the stack. H the pages in a stack are of arbitrary address ranges, it is not 

meaningful to simply compare two addresses in different pages. 

The simplest approach is to restrict the page allocation algorithm such that a 

new page is selected only if it has a higher page address than the previous page of the 

stack. Then address comparison can proceed as if the stack address space were contiguous, 

since addresses across pages are monotonically increasing. This scheme increases the page 
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allocation and deallocation time, since a page with a higher address must be searched for 

in the free-page-list. 

An alternative approach is to eliminate address comparison to allow the pages to 

be in arbitrary order. This will be discussed in section 4.3.3. 

4.3 Qualitative Evaluation 

4.3.1 Advantages 

The dynamic memory management style of ELPS has a number of advantages over 

other schemes. They are: 

• more efficient sharing of the global address space than static partitioning, reducing 

the need for garbage collection. 

• much less expensive overflow handling than copy-when-overflow. 

• more efficient handling of underflow. 

• much simpler hardware support than virtual memory and does not require address 

translation which adds complexity to the cache system. 

The heap style management may also be quite appropriate for garbage collection 

[TH88]. Garbage collection typically involves copying valid data to a new section of memory, 

and deallocating the old section which include invalid data. Due to the link structure in 

ELPS, any free page can be readily obtained for copying data from pages in current use, 

and pages in current use can easily be replaced by other pages. 

4.3.2 Challenges 

This heap-style management scheme introduces complexity which can potentially 

affect performance. This section considers the challenges of the scheme, and discusses the 

potential impact on performance. They are as follows: 

• Ejjiciency of overflow/underflow checking. Without any hardware support, the ef­

ficiency of overflow /underflow checking depends largely on program behavior: the 

frequency in which items are put on and removed from the stack. The type of hard­

ware support to be used depends on its effectiveness and implementation feasibility. 
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• Frequency of page crossing. Crossing a page boundary on an overflow takes additional 

time to follow the link. It is expected that the page size is chosen to be large enough 

such that overflow is infrequent. A potential problem would exist in the case where 

stack storage and removal occur frequently at around a page boundary. 

• Fragmentation. In ELPS, there are two types of internal fragmentation that can 

occur. (Since the pages are of equal size and may be assigned to any task, there is no 

external fragmentation.) The first type of internal fragmentation occurs at the end of 

each non-top-most page, where some space is left unused because a contiguous data 

object does not fit and must be placed on the next page. The second type occurs at 

the end of the top-most page on the stack, the space is left unused when a task goes to 

sleep. If the page size is properly chosen, the internal fragmentation can be minimized 

and may be insignificant. Compared with static partitioning, internal fragmentation 

of ELPS pages is much smaller than internal fragmentation of the fixed address range. 

From that view, reduced fragmentation is the biggest advantage of ELPS. 

• Elimination of address comparison. If the monotonic stack is too restrictive, the 

pages may be allowed to be in arbitrary order. However, this requires that address 

comparison be eliminated since comparing the address of data objects in different 

pages of the same stack has no significance. The following section will describe how 

it can be done for execution of Prolog. 

4.3.3 Elimination of Address Comparison 

If there is no address ordering among the pages, simple address comparison can 

not be done to determine the relative positions of objects on the same stack but in different 

pages. Therefore, address comparison should be eliminated. The following schemes may be 

used to eliminate address comparison in the WAM: 

1. Separate Environment and Choicepoint Stacks 

If the control stack is used to store both environments and chokepoints, E points 

to the topmost environment, whereas B points to the topmost choicepoint. When 

new space is allocated on top of the stack, the two pointers are compared to find 

the top of the stack. By separating the environment stack and the chokepoint stack, 

each stack has its own top of stack pointer, and thus the comparison is no longer 
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needed. Separating the stacks also allows some environment space to be recovered, 

and enhances efficiency of garbage collection [TH88]. Under static partitioning, having 

an extra stack increases the chance of overflow because the shared space has to be 

further divided. This is not a problem under ELPS, because ELPS can support 

millions more stacks. 

2. Trail All Bindings 

When binding an unbound variable, the variable address is compared with stack 

markers. If the variable is below B, the pointer to the last chokepoint on the stack, 

or below HB, the pointer to the heap, then the binding must be trailed. We propose 

two alternatives to the usual address comparison: 

(a) trail all bindings, thus eliminating the need for comparison; 

(b) if the addresses are on the same page, compare and trail only if variable lies 

below the pointer; otherwise, trail any way. 

Trailing all bindings can potentially double the amount of trailing [TD87], but sig­

nificant saving is obtained by avoiding the address comparison. The time saving is 

significant when the address space is contiguous, and is even more significant when the 

address space is discontiguous. Alternative (b) provides a partial check for trailing, 

and reduces the number of trailings. Since trailing takes up only about 5% of total 

execution time, trailing all bindings for the sake of simplicity may be a good tradeoff. 

3. Put All Variables on Heap 

A variable that is allocated on the stack is potentially unsafe since the environment 

trimming and tail recursion optimization may deallocate the variable location, re­

sulting in a dangling reference. A put_unsafe_value instruction is used to copy this 

variable onto the heap, making the variable safe. In the current scheme, a variable 

may reside on either the heap or the stack, and thus a pointer comparison is made 

to :find out where a variable is located. We propose that all variables be put on the 

heap, eliminating the need for this comparison. Dereferencing a permanent variable 

requires an extra level of indirection, but time and complexity are reduced since no 

comparison is need to determine where the variable resides. 

Standard order builtins, such as Cl<, use address comparison to determine the order of 

creation of two unbound variables. In such cases, either the monotonicity of the pages must 
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be maintained, or a tag must be kept for the relative order of the pages in a stack. 

4.4 Chapter Summary 

In this chapter, we have presented ELPS, a hybrid heap-stack storage model for 

parallel execution on shared memory multiprocessors. At the global address level, the space 

is organized into a heap, which is a linked list of pages. At the local task space level, the 

pages are used to form logical stacks. The issues of page link storage, overflow/ overflow 

detection, overflow /underflow handling, and data access have been discussed with some 

proposed solutions. A qualitative evaluation points out the promising features of ELPS as 

well as the challenges that needs to be overcome for efficient implementation. 

In the following chapter, we will describe the multiprocessor simulation system 

used to evaluate ELPS. Details of the implementation of ELPS on the simulated multipro­

cessor will also be provided. 
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Chapter 5 

NuSim: A Multiprocessor System 

Simulator 

In the previous chapter, we described a hybrid heap-stack scheme for dynamic 

allocation of memory. In this chapter, we present the simulation methodology used to 

evaluate the proposed memory management scheme. 

5.1 Introduction 

Due to the numerous and intricate details involved in the operation of a computer 

system, simulation is an essential and effective approach in understanding and verifying 

theoretical models and architecture designs before they are built. There are many simulation 

methodologies, which differ in the level of details being simulated. 

We have built a simulation system (called NuSim) to facilitate our studies of mem­

ory management for parallel execution on shared memory multiprocessors. This simulator 

framework allows for the complete system simulation: from the instruction set level to the 

memory architecture level with caches and communication protocols. The key feature of 

this simulator framework is flexibility, which allows for extensive instrumentation and con­

tinual updates and changes. The modular design identifies main features of the execution 

model and the architectures being simulated as cleanly separated modules with clearly de­

fined interfaces. This allows for easy modifications to the individual modules to support 

new execution models and architectures. 

Currently, the simulator supports the PPP Execution Model [Fag87], which ex-
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ploits AND fOR parallelism in Prolog programs, and a Multi memory architecture [Bel85], 

multiple coherent caches on a single bus. The long term goal is to provide a flexible simula­

tion environment where extensions to the execution model and the architecture can easily 

be incorporated, by modifying existing modules or replacing them with new ones. For 

example, the Aquarius II architecture ([DS88, Appendix 3] and [NS88]) and the multiple 

bus multiprocessor architecture [Car89] may be simulated using NuSim, with the appropri­

ate replacement modules. The complete listing of NuSim code is available as a technical 

report [Ngu90]. 

5.2 Simulator Design Goals 

The design goals for this simulator are: 

1. modularity 

The simulator framework designed to be as modular as possible, with clean separation 

of the modules dealing with different features of the execution model and the archi­

tecture. This also allows easy modifications to the architecture and/or the execution 

model. 

2. simulation time efficiency 

Simulation is inherently time consuming, thus it should take as little time as possible 

to simulate the model and the architecture running a benchmark. Simulation of a 

multiprocessor system on a sequential host can be several orders of magnitude worse 

than actual run time of the multiprocessor target. 

3. simulation space efficiency 

The simulator should take up as little space as possible at run time, both the code 

space and the data space. Byte code is used for more realistic architecture simulation 

(taking into account code as well as data accesses) and also for greater space efficiency. 

4. good programming practice 

Strict programming discipline is used in coding. Separate modules are isolated in 

different files, with local and exported functions explicitly declared (the default all 

global style of C is not used). This is important in catching bugs at an early stage, 

making the code easily understandable to others and safely modifiable (by data hid-
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ing). Macros are used where appropriate to increase code legibility and high level 

understanding, to reduce repetition, and to make fast and reliable changes possible. 

For example: 

ldefine X_FIELD 5 

ldefine PR_STAT(a,b) fprintf(fp, "A • Y,5d B • Y.7.1fY.Y.", a, b) 

LFIELD is more logical than 5. PR..STAT may be reused many times, reducing the 

amount of code text, and the print format change can easily be made at only one 

place. 

5. portability 

The simulator is written in fairly portable C code, with the exception of the assembly 

language routine for coroutining, and a few system dependent operating system calls 

(needed for resource usage monitoring ofthe host machine). It was developed on a Sun 

3/50 (MC68020) running 4.3 BSD Unix™. It has been ported to the VAX/785 and 

VAX/8600 (running 4.3 BSD Unix™) and an Intel 386 personal computer (running 

System V Unix™). It should also be portable to other 32-bit machines. Porting to 

non-Unix machines require some changes to the system calls. 

5.3 Simulation System Overview 

5.3.1 Program Transformation 

A Prolog benchmark goes through several stages of transformation before it gets 

to run on the simulator. Figure 5.1 shows these steps. First, the Prolog benchmark gets 

annotated by the programmer for parallel execution (static scheduling approach). This 

programmer's annotation can be assisted by use of the Static Data Dependency Analysis 

program (SDDA) [Cha85, Cit88]. Some work has been done by Bitar [Bit89a] to automati­

cally annotate Prolog programs, using data dependency information obtained from SDDA. 

Second, this annotated Prolog program gets compiled by the PLM compiler [VR84]. The 

PLM compiler is capable of accepting annotations for AND-parallelism (e.g., a :- b t c) 

and OR-parallelism (e.g., orpar(a) ). The compiler transforms the annotated Prolog code 

into PPP assembly language code. The simulator directly loads in assembly code, then 
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activates the assembler to assemble it into a byte code stream and to generate a symbol 

table. The assembler is integrated with the main simulation engine to eliminate the need 

to write out the symbol table to a file and to re-load it in for execution. 

Prolo co~ 

Programmer's 
annotation 

anrwtoUd Prolog coth 

1-~ .. 1 
PPP assembly c~ 

Figure 5.1: Program Transformation 

The following is an example of the program transformation. 

Prolog program: 

main·- a(X), b(Y). 

a(X) :­
a(X) :-

b(X) :-

Annotated program: 

:- option(par, orpar(a/1)). 

main·- a(X) t b(Y). 

a(X) ·­
a(X) ·-

X OR parallelism annotation 

Y. AND parallelism annotation 

• 
~ 



5.3. SIMULATION SYSTEM OVERVIEW 

b(X) :- ... 

Compiled PLM assembly code: 

procedure main/0 
i_allocate 2,_1_206,_1_206,0 
put_variable X1,X1 
call_p a/1,1,1 
put_variable X1,X1 
call_p b/1,2,1 
wait 1 
deallocate 
proceed 

_1_206: 2 
0 

procedure a/1 
try_me_else_p _2_776 

proceed 
_2_776: trust_me_else_p fail 

proceed 

procedure b/1 

proceed 

5.3.2 Design Considerations 

X AND-fork procedure , a• 

X AND-fork procedure 'b' 
X join 

X Join table 

X OR-fork 1st clause •a• 

X OR-fork 2nd clause •a• 
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In designing a new simulation system, we had considered a wide variety of op­

tions. Our chosen simulator design and implementation methodology is a compromise of 

the various options to be most suitable to the goals described in section 5.2. We prefer 

detailed simulation of the complete system architecture over trace simulation and stochas­

tic modeling to obtain more accurate measurements on system memory performance. We 

chose an event driven simulation approach over a cycle by cycle simulation mainly because 

it has been proven to be quite successful with previous multiprocessor simulation efforts. 

SIMON [Fuj83a, Fuj83b] is a simulator for multicomputer networks and Multisim [CHN88] 

is a simulator for single bus cache coherency protocol. We also believe that the event driven 

approach allows for a more modular and hierarchical design. 
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Figure 5.2: NuSim Simulator Framework 

We chose C as the implementation language over the specialized languages such 

as Endot ISP [End87] and GPSS [Scr74] for practical reasons: Cis fairly well understood, 

flexible, portable, and efficient. It also allows for easy integration with existing modules of 

simulators such as Multisim and SIMON, which were both coded in C. 

5.4 Module Description 

The simulator is basically an event driven simulation system, with memory accesses 

as the events. The events are ordered by time stamps and access priority, according to the 

network arbitration protocol. 

Figure 5.2 shows an overview of the simulator, which consists of: the assem­

bler/loader, the command interface, the graphical interface, the main simulation engine, 

and the memory system. 

5.4.1 Assembler/Loader 

The assembler/loader loads in the assembly language file, assembles it into a byte­

code stream, and stores the stream into the code space of the simulated memory. This 
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module also builds a symbol table to be used during execution of the code. 

5.4.2 Command Interface 

The command interface allows for user interaction with the simulator. The user 

commands can be entered interactively at a terminal, or collectively provided in a command 

file which is read in and executed. This command interface is particularly useful for inter­

active debugging, which will be discussed in section 5.6 (Multi-level Debugging Facility). 

5.4.3 Graphical Interface 

The graphical interface provides a more user-friendly interactive environment for 

debugging and observing the execution activities of the simulated multiprocessor system. 

It may also be used to graphically display performance statistics. Section 5. 7 will provide 

an extended description of xNuSim, a graphical interface for multiprocessor simulators. 

5.4.4 Main Simulation Engine 

The main simulation engine is composed of submodules which simulate the parallel 

execution model on the processors. The submodules are: the processor, the task kernel, the 

scheduler, and the memory manager. 

Processor 

The processor submodule contains routines to emulate the model processor, ex­

ecuting a specified instruction set. Currently, the VLSI-PLM [STN*88] instruction set is 

supported by the processor module. All the PPP Execution Model instructions for parallel 

execution (e.g., call~ and try~) are also supported. The width of the registers is 32-bit, 

which includes 2 bits for tags. 

Memory Manager 

An efficient memory management scheme is needed to support the PPP execution 

model, allowing efficient allocation and deallocation of memory space for the PPP's poten­

tially numerous tasks. The memory manager submodule implements the Explicitly Linked 

Paging Stack (ELPS) memory management scheme described in the previous chapter. This 
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includes routines to service the page crossing upon stack overflow /underflow, and to man­

age the free-page-list. In the processor submodule, changes (increment/decrement) to a top 

of stack pointer is constantly monitored for potential page crossing. This simulates the 

boundary checking done by various software and hardware techniques. These operations 

will be described in greater detail in section 5.9. 

Task Kernel Module 

The task kernel submodule represents the parallel execution model. Currently, 

the PPP Execution Model [Fag87] is simulated. A task is a piece of work which may be 

executed in parallel with other tasks. In the PPP execution model, there are two types of 

tasks: AND-task and OR-task. In Fagin's thesis, these tasks are referred to as processes. To 

differentiate a PPP light-weight (shared address space) process from a heavy-weight Unix 

process, this entity is now called a task. 

The task kernel submodule consists of routines to handle task creation, commu­

nication and termination. The PPP model supports independent AND parallelism, OR 

parallelism, and semi-intelligent backtracking. The simulator currently does not support 

semi-intelligent backtracking. Studies by Fagin indicate that few Prolog programs can 

take advantage of semi-intelligent backtracking. Therefore, it is left out mainly to reduce 

the complexity of the simulator and to focus on memory management for AND- and OR­

parallelism. Sequential execution stands to gain the most from semi-intelligent backtracking. 

The PPP's task communication is implemented using shared memory, with each 

task having a communication area. Figure 5.9 shows task A communicating with task B. 

If the receiving task is executing in some processor, the sending processor writes into a 

special memory location associated with the receiving processor, causing an interrupt on 

the receiving processor (figure 5.9(a) ). If task B is sleeping, the transaction will be put in 

the communication area of its task control block, which will be noticed when the task gets 

picked up by an idle processor (figure 5.9(b)). 

The task kernel submodule also includes routines to manage the multiple binding 

environments for OR-tasks. The current implementation supports the dynamic window 

linking scheme for AND/OR parallel execution of the PPP Model. These routines include: 

bind (to store data in these hashwindows), dereference (to retrieve data), and handler rou­

tines for success and failure (to link and unlink the window chain). 
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Figure 5.3: Task Communication 
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Scheduler 

The scheduler manages the task pool and assign tasks to processors. For the PPP 

Execution Model, all tasks get spawned as compiled, unless there is insufficient resource. 

Currently, a naive scheduler allows an idle processor to randomly pick the next ready task 

to run. 

The scheduler operates on a set of queues. The current implementation has four 

queues. The ready queue contains the tasks that are ready to be run. The sleeping queue 

contains tasks that have succeeded and returned answer to its parent. A task must be 

retained in sleeping state for the storage of its computed result, and for the state which 

may be backtracked into at future time. The sleeping queue also contains parent tasks 

that are waiting for responses from the children. The pending queue contains tasks that 

are suspended due to an 1/0 request. To maintain standard Prolog semantics, these tasks 

are not allowed to proceed until they become the leftmost child. Finally, the free queue 

contains task table entries that are unused, available for the creation of new tasks. 

5.4.5 Memory System 

The memory system simulates the memory subsystem of the architecture which is 

composed of: caches, interconnection network, and main memory. As shown in figure 5.2, 

the interface to the main engine is through four memory access routines: read, write, lock, 

and unlock. Lock and unlock provides the synchronization primitive needed to achieve 

mutual exclusion. 

Multisim [CHN88] is a simulator for a single bus multiprocessor with multiple 

hardware coherent caches (figure 5 . ./). Three modules have been extracted from Multisim 

and integrated into NuSim to provide a memory system for the new simulator: the event 

manager, the cache module, and the memory module. 

The et1ent manager contains routines to manage (insert and delete) the prioritized 

event queue, simulating the single bus broadcast and arbitration protocol for the requests 

coming from the caches. It also contains the system-dependent assembly language routines 

save~tate () and restore....state (),which are called to switch among the processors being 

simulated. 

The cache module simulates the cache of a processor, responding to memory re­

quests coming from the processors. In case of a cache miss, the cache module sends out the 



5.5. INSTRUMENTATION 65 

M-msmory 

Figure 5.4: The Multi Architecture 

memory request onto the bus, and awaits response. The operations include cache lookups, 

bus request, bus broadcast, cache busy wait, and other steps needed to implement the co­

herency protocol. Multisim implements Bitar's cache coherency protocol with the cache 

lock state [BD86]. 

The simulated processor has a 32-bit internal datapath. Since 3 bits are used for 

tags1 , there are 29 bits for storing data. The memory module of Multisim simulates the 

multiprocessor's 29-bit word-addressable main memory. It uses a 2-level paging scheme 

similar to that of virtual memory managed by the operating system. This paging scheme 

allows the simulated architecture to access the entire 29-bit address range, while using a 

much smaller percentage. Space is allocated only for simulated memory blocks which are 

actually read or written by the simulated processor. This is an important feature since it 

automatically manages the address space, and frees the programmer from the concern of 

mapping the benchmark code and data spaces onto the limited available space allowed by 

the operating system (4.3 BSD or System V Unix™) for each Unix process. C functions 

calloc () and malloc () are used to obtain memory dynamically from the operating system. 

5.5 Instrumentation 

The major advantage of a simulation over an actual implementation is the ease 

and flexibility of instrumentation. Software instrumentation in a simulator can be done 

much easier than hardware instrumentation in an actual implementation. The main goal of 

1 2 bits for the 4 main Prolog types (variable, constant, list, a.nd structure) a.nd 1 bit for the symbol table 
entry subtype. 
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our simulation system is to be able to study the behavior of the parallel execution model 

as well as the performance of the underlying architecture supporting the model. 

With respect to the PPP parallel execution model, the simulator is instrumented 

to record: 

1. parallel execution overhead: task creation, termination and communication. 

2. memory space usage and performance of memory management scheme (ELPS): max­

imum code and data space required and cost of allocation, deallocation, and redistri­

bution. 

3. degree of sharing: frequency of accesses to shared data, and size of shared data. 

With respect to the system architecture, the simulator is instrumented to measure: 

1. processor performance: percentage of memory accesses versus internal operations. 

2. cache hit ratio, as a function of cache size, block size, and associativity. 

3. the effectiveness of the cache coherency protocol, as a function of the cache hit ratios, 

number of cache updates, invalidations, and bus utilization. 

4. the effectiveness of the synchronization primitives and the locking protocols, as a 

function of the time for busy waits of locked objects. 

Instrumentation is done by putting counters at appropriate places in the simulator 

routines. The results are reported at the end of execution of a benchmark. For some 

measurement such as lifetime of a task, the result will be reported as it becomes available. 

The desired performance numbers, such as percentage of reads versus writes, are computed 

from these counter values. The performance table generator accepts the counter values as 

input, computes the desired performance numbers, and prints them in a table format. A 

spread sheet program is also used in analyzing data and printing out tables. 

The simulator itself was profiled to determine the routines where most of the CPU 

time are spent. This information helps in optimizing the critical routines in speeding up 

the simulation time. Currently, there are two different sets of assembly language routines 

(save~tate() and restore...stateO) to perform the coroutine switch. One set copies a 

portion of the C execution stack to a saved area. This technique works with DBX, the Unix 

symbolic debugger, to allow debugging of the simulator. The second routine uses multiple 

• i. 
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stacks and swap the stack pointers for a coroutine switch. This gives 30% faster execution 

but does not work with DBX. Fortunately, it does work with GDB, the GNU symbolic 

debugger from the Free Software Foundation. The decision as to which set of routines to 

use is made at compile time. 

5.6 Multi-level Debugging Facility 

NuSim contains an interactive debugger to help debug the simulated system as 

well as the simulator itself. This debugger allows for setting various types of breakpoints at 

the instruction level and for printing out special Prolog data structures such as choicepoints, 

environments, and task table entry. With the appropriate settings, the NuSim debugger can 

interact with a C language symbolic debugger (such as DBX or GDB) to allow multilevel 

debugging of the execution model and the C source code (which represents the microcode 

of the hardware engine). Please see NuSim User's Manual (appendix A) for a more detailed 

explanation of the interaction. 

The following three figures provide a "feel" for the multi-level debugging capability 

of NuSim. First, figure 5.5 shows a sample run of the simulator with the NuSim debugger. 

After the compiled Prolog program has been loaded, ml shows the memory layout of the 

target multiprocessor's memory, and code shows a listing of the program, and bp sets a 

breakpoint at a specified code address. Simulation is then started by run, and the debugger 

prompt appears when the breakpoint is reached. ps shows the processor state (register 

values) of the specified processor. 

Figure 5.6 shows how debugging can be accomplished at the C language symbolic 

level. GDB is the symbolic debugger used in the illustration. And thirdly, figure 5.7 shows 

multilevel debugging with both the NuSim debugger and GDB. 

In addition to the basic status checks and breakpoint capability, other debugging 

commands are added as necessary. A menu system with table driven input is set up to 

allow easy addition of new debugging commands. The main goal in debugging support 

is to minimize the user input, letting the debugger do most of the work, and to keep the 

outputs at a logical, abstract level. Hiding much of the detailed information makes it easier 

to understand the status of the execution. For example, print topmost choicepoint is 

used instead of print choicepoint starting at <addr> since the first is more logical, 

and does more work (it must first check for the top of choicepoint stack pointer). 
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UIIX> nusim Benchmarks/Misc/con1.w 

***** JuSim ----- SUI Version 1.2 ----- July 8, 1989 (tast coroutine) 

File '/hprg/luSim/Benchmarks/Misc/con1.w' loaded [Ox3820-0x3872]. 

Type 'h' tor help. 

--luSim:DBG> ml 

*** MEMORY LAYOUT [Ox1000 - Ox1ttttttt] *** 
FTQ base/head/tail Ox1020/0x3t/Ox0 

Task Table base Ox1120 

S/A-Heap base Ox1b20 

Code start/end Ox3820/0x3872 

Code size 83 words 

DataSpace start Ox3880 

Task Data size 8388381 words 

Heap ratio 0.40 

Window size 128 worda 

--luSim:TOP> code Ox3820 Ox382S 

Ox 

Ox 

Ox 

3820: put_list 

3822: unity_constant 

3824: unity_variable_x 

--luSim:TOP> bp Ox3824 b 

Breakpoint Ox3824 set! 

--luSim:TOP> run 

10 

a 

13 

(PO TO) • Ox3824 unity_variable_x 13 

--luSim:DBG> ps 0 

proc #0 executing task #0 at time 380 -- timer = 0, ctlow = FORWARD 

P: 3826 CP: 0 E: 0 B: 336baS 

TR: 80379c 

TS: S9d1&0 

AO: 3900 

A4: 0 

tO: 0 

t4: 0 

--luSim:DBG> 

B: 3901 liB: 3900 S: 

oP: 3824 cut: 0 aode: 

U: 0 !2: 0 !3: 

AS: 0 !6: 0 !7: 

t1: 0 t2: 0 t3: 

tS: 0 t6: 0 t7: 

Figure 5.5: Simulation Run with NuSim Debugger 

3900 

write 

0 

0 

0 

0 
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UIIX> gdb nus im 

GDB 2.7, Copyright (C) 1988 Free Software Foundation, Inc. 

Reading symbol data from nusim ... done. 

(gdb) break init_sim 

Breakpoint 1 at Ox13dea: file init_sim.c, line 46. 

(gdb) run -d Benchmarks/Misc/con1.v 

Starting program: nusim -d Benchmarks/Misc/con1.v 

••••• luSim ----- SUI Version 1.2 ----- July 8, 1989 (fast coroutine) 

Bpt 1, init_sim (pid=O) (init_sim.c line 46) 

46 if (!(reqs[pid] = (MEM_EVEIT •) malloc(sizeof(MEM_EVEIT)))) 

(gdb) info break 

Breakpoints: 

lum Enb Address Where 

#1 y Ox00013dea in init_sim (init_sim.c line 46) 

(gdb) delete 1 

(gdb) next 

49 if (!(proca[pid] = (PROC_STATE •) malloc(sizeof(PROC_STATE)))) 

(gdb) cont 

Continuing. 

File '/hprg/luSim/Benchmarks/Misc/con1.v' loaded [Ox3820-0x3872]. 

[a, b, c , d, e] 

Top level query success 

Exiting Simulator ... Simulated time: 1339 cycles 

RUSiGE: 2.0u 0.7s 1388+4329+0k 6+1io 10pf+Ov 

(gdb) 

Figure 5.6: Simulation Run with GDB (C-language) Symbolic Debugger 
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UJIIX> gdb nusilll 

GDB 2.7, Copyright (C) 1988 Free Software Foundation, Inc. 

Reading symbol data from nusim ... done. 

Breakpoint 1 at Ox1b4fe: file toplevel.c, line 124. 

***** luSim ----- SUI Version 1.2 ----- July 8, 1989 (fast coroutine) 

File '/hprg/luSim/Benchmarks/Mi•c/con1.v' loaded [Ox3820-0x3872]. 

Type 'h' for help. 

--NuSim:TOP> bp concat/3 b 

Breakpoint concat/3:0x3852 set! 

--NuSim:TOP> run 

(PO TO) • concat/3: Ox3852 svitch_on_term _2_719, _2_720, fail 

(PO TO) (884) Call: concat([a,b,c],[d,e],_59d1a0) 

--NuSim:DBG> dbx 

Bpt 1, dbx_break () (toplevel.c line 124) 

124 } 

(gdb) break svitch_on_term 

Breakpoint 5 at Oxd1f2: file /vlsi2/tam/luSim/Source/Proc/index.c, line 21. 

(gdb) c 

Continuing. 

--l'iuSim:DBG> c 

Bpt 5, switch_on_term (pid=O) (/vlsi2/tam/JuSilii/Source/Proc/index.c line 23) 

23 DECLARE_proc; 

(gdb) next 

25 T(O) = dereference(pid, A(O)); 

(gdb) n 

26 switch( TAG(T(O)) ) { 

(gdb) ndb 

--luSim:DBG> env 0 

Sequential environment (base = 59d1a5) 

E: 0 

YO: 8059d1a0 

--luSim:DBG> c 

(gdb) 

CP: 

Y1: 

0 

0 

8: 

Y2: 

336ba5 

0 Y3: 0 

Figure 5.7: Multi-level Debugging with NuSim Debugger and GDB 



5. 7. XNUSIM: A GRAPHICAL INTERFACE FOR MULTIPROCESSOR SIMULATORS71 

5.7 xNuSim: A Graphical Interface for Multiprocessor Sim­

ulators 

A graphical interface can greatly enhance the ease of use of a simulator, and make it 

easier to monitor the various activities of the simulated architecture. A graphical interface 

can also be used to report performance results. The process of displaying intermediate 

simulation data is also known as animation in simulation terminology [Sar88]. 

A graphical interface for multiprocessor simulators has been developed and inte­

grated with NuSim. It runs under the X11 Window System and is thus called xNuSim [Pan89]). 

This graphical debugging environment is modeled after DUES [Wei88], the graphical inter­

face to the sequential VLSI-PLM simulator. xNuSim provides multiple windows for viewing 

of code, execution output, processors' status, and memory contents. It enhances the ease 

of use of the NuSim simulator. 

The key feature of xNuSim is its loosely coupled interface with the NuSim simula­

tor, thus enabling it to be used with other simulators as well. xNuSim knows nothing about 

the internal operations of NuSim and only communicate with NuSim via the NuSim's com­

mand interface (please see figure 5.2 and section 5.4.2). When the simulator is run without 

xNuSim, commands are entered from keyboard and simulator outputs are shown on the 

screen in text form. With xNuSim, commands may be entered either by use of the mouse 

and pop-up menus, or by use of keyboard as before. xNuSim interprets the output of the 

simulator to extract the relevant data used in the graphical display windows. To use xNuSim 

with another simulator, only simple changes to the menu tables and command formats are 

needed to customize xNuSim for that simulator. Figure 5.8 shows a sample setup of the 

graphical interface. 

For future work, additional features can be added to this graphical environment 

to allow monitoring of parallel tasks and multiprocessor activities. A useful feature would 

be to show the execution tree as time progresses. For example, the graphical environment 

was implemented at the Argonne National Lab for their OR-parallel system [DL87]. This 

graphical environment accepts execution traces as inputs and shows the changing of the 

execution tree through time. Such a system for the PPP model would be quite useful in 

understanding parallel execution and the effects of the scheduler. 
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5.8 Compatibility and Extendability 

The simulator framework is designed to be compatible with many of the exist­

ing software packages, improving existing ideas and allowing for better integration. The 

simulator framework is also designed to accommodate future changes with the least pos­

sible amount of programming effort. The following are some notes on compatibility and 

extendability of the simulator framework: 

1. The PLM Compiler with the latest support for PPP is used to generate PPP code 

from a Prolog benchmark. 

2. Due to removal of CDR-coding and split environment and chokepoint stack, the 

semantics of a few instructions have been slightly altered. Thus some routines in the 

library of builtins in VLSI-PLM instruction set would require rewriting, especially 

those which contain a sequence of instructions to build up a list or structure. These 

builtins are currently written in C code, as is the PLM instruction set, thus simulating 

the builtins in microcode. These builtins may be written in VLSI-PLM code in the 

future to simulate the builtins as software routines. 

3. The simulator is fully compatible with the Multisim memory and cache module. Mul­

tisim has been incorporated into the new simulator. With the interface of the four 

routines to read, write, lock, and unlock, a memory and cache module for another 

memory architecture may replace the single bus hardware cache coherent system. 

The simulator should also be compatible with other memory system simulators such 

as SIMON [Fuj83a] which satisfy two requirements: that they employ event driven 

methodology, and that they are coded inC (or object code compatible). 

4. Ideally, it is desirable to have other processor modules to be compatible with the 

PPP Task Kernel. Compatibility works best at a high level abstraction. For example, 

push(H,X) is being used instead ofmemvrite(H++ ,X). This allows the push function to 

increment or decrement the pointer appropriately, and the checking of page boundary 

crossing can also be done in the push function. 

5. The ELPS memory management module should be compatible with any instruction 

set, since page crossing exceptions are handled at a low level below the instruction 

set. 
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6. Any modification to the binding environments involve the basic routines, such as bind, 

dereference, trail and also operations upon process creation, termination (success or 

failure), and switching (success and wakeup). 

7. There is at least one simple extension to the naive scheduler of the PPP: attach a 

priority to each process and keep the ready tasks in priority queue or tree structure. 

Idle processors can select the ready task with the highest priority. More extensive 

changes to the model would require additional data structures for handling of the 

parallel goals, and appropriate routines to manipulate them. Changes in the schedul­

ing scheme would affect task creation, termination, and switching. 

5.9 Implementation of ELPS on the Simulated Multipro-

cess or 

Two different techniques, one with hardware support and another entirely in soft­

ware, are used to implement ELPS on the simulated multiprocessor architecture. The 

dataspace address range for all tasks is partitioned into small pages of a power of 2 size. A 

small block of the lowest addressed words in each page is reserved for storing the links and 

information regarding the page. Currently, the two lowest words are used to store the two 

links. 

5.9.1 Software Checking 

In the software technique, overflow checking is done on the stack pointer each time 

it is updated. The page_mask is a constant that used to obtain the page number. The 

overflow checking algorithm is as follows: 

new_ptr • stack_ptr + object_size; 

current_page • stack_ptr t page_mask; 

new_page • new_ptr t page_mask; 

if (current_page != new_page) then 

call overflow_handler(); 

When overflow occurs, the overflow handler is called to obtain a new page, link it with the 

top page on the stack, and update the stack_ptr. This software check costs four cycles. It can 
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be reduced to two cycles if a register is designated to store the page boundary, containing 

the highest address in the current page. One upper _page_limit register is needed for each 

stack, and it is updated at the time of overflow. The checking is simplified to: 

new_ptr • stack_ptr + object_size; 

if (new_ptr > upper_page_limit) then 

call overflow_handler(); 

To check for underflow, the stack pointer is compared against the boundary of the 

link fields, stored at the bottom of a page. A link_mask is used to determine the boundary 

of the link fields. The algorithm is similar to overflow. With a register reserved for the 

lower_page_limit, underflow checking can be done in two cycles. 

5.9.2 Hardware Support for Checking 

With hardware support, overflow and underflow checking can be overlapped with 

the stack push/pop operation, thus requiring no extra time. Two status signals are used 

to indicate an overflow (or underflow) and causes a trap to the exception handler. The 

outside current page signal indicates that the new stack pointer is outside of the previous 

page, which may be an overflow or an underflow, and the inside link area signal indicates 

that the new stack pointer is inside the link area, which is an underflow. Figure 5.9 shows 

the hardware logic circuit, using a page mask, a link mask, and two comparators. The 

hardware support for this check requires the delay of one additional AND-gate and one 

OR-gate over a normal comparison. However, this should not lengthen the cycle time since 

equality comparison is generally not in the critical path of ALU designs. The figure uses 

the generalized case of the full word width. By fixing the page size or the link fields to a 

certain range, full word (e.g., 32-bit) comparison is not needed, thus reducing the chip area 

and comparison circuit delay in the processor. In the most general case, page mask and 

link mask can be writeable special registers, allowing for the configuration of the page size 

and the info associated with each page at the start of execution. 

Page allocation is done on-demand at the time of overflow, and deallocation is done 

lazily. For fast startup time, only a portion of the dataspace is partitioned into pages and 

put into the free-page-list. The others are kept as uninitialized memory, and gets initialized 

only when the free-page-list is empty. If the uninitialized memory is also empty, normal 
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Figure 5.9: Hardware Support for Out-of-Page Check 
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execution in all processors are suspended, and the stacks are scanned for free pages not yet 

deallocated. 

5.10 Chapter Summary 

In this chapter, we describe a multiprocessor simulation system, called NuSim. It 

is an event-driven simulator with memory accesses as events. The modules are designed 

to simulate the processor, the memory system (including caches), and the interconnection 

network. The simulator accepts a compiled Prolog program as input and outputs perfor­

mance evaluation statistics. The current implementation simulates a multi [Bel85], using 

the cache lock state protocol [BD86] to keep the caches consistent. Debugging support for 

the simulator includes a graphical interface, called xNuSim [Pan89], and a multi-level de­

bugger (for the instruction level and the register transfer or microcode level). The ELPS 

memory management model is implemented on the simulated target multiprocessor using 

two schemes: software only and hardware support. The check for page boundary overflow 

costs two cycles for the software only scheme and require no extra time with hardware 
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support. 
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Chapter 6 

Simulator Validation 

6.1 Introduction 

Simulation can be an accurate and effective approach in predicting performance 

of a new multiprocessor system, if the many intricate details in the hardware and software 

designs are taken into account. The degree of accuracy depends on how much detail is 

included in the simulator. To ensure that the simulator accurately reflects the system yet 

to be built, the simulator must be carefully validated for correct functional as well as timing 

results. 

The validation process is carried out by comparing performance data from the 

new simulator with known data obtained from previously validated sources. The validation 

process itself can be quite tedious and difficult, with massive amounts of information that 

need to be analyzed. In this chapter, we present our approach to validating the framework 

and the processor module ofNuSim, described in the previous chapter. The process involves 

sequential execution of benchmark programs on NuSim and a uniprocessor simulator, com­

paring results and performance data. 

6.2 Validation Methodology 

There are many approaches to the validation of a simulation model [Sar88]. The 

concept of our approach to validation is quite simple: comparing new, unverified results 

with previously known answers. The more difficult task is the careful consideration of 

the many different factors that can affect the results and the degree of these effects. The 
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validation process for a computer system simulator is best done in a stepwise fashion. The 

exact details of the necessary steps depends on the availability of the known result, or the 

basis, used for comparison. 

For the rest of this thesis, the term host designates the machine on which the 

simulator is run and target refers to the computer architecture/system being simulated. 

Validation refers to the process of ensuring that the simulator is coded correctly and that 

it accurately models the target. 

In the initial phase, where a paper design is the only basis available, validation of 

the simulator usually consists of: 

1. Manually checking for correct coding according to the paper design. 

2. Running the simulator and checking for functional correctness, comparing the results 

with manually worked out solutions. 

3. Manually checking the timing of sub-blocks in the simulator. 

4. Running the simulator to obtain timing estimates. 

5. Running simulator with instrumentation turned on to capture dynamic execution 

statistics. 

The term manually used above refers to the ad hoc approach of eyeballing (for 

steps 1 and 3), hand calculations (step 2), or writing small, very special purpose software 

tools to accomplish the tasks. This approach is tedious and error prone, but is often the 

only possible way at this phase since a paper design is the only available basis. In step 5, 

the monitor facility for instrumentation should not affect the timing. 

Once the initial simulator is validated, it may be used as a basis for validating 

other simulation systems. The validation process can now be done with a greater degree of 

automation, and thus achieving greater efficiency. However, great care must still be taken 

to understand the factors that cause discrepancies. 

The validation process of a multiprocessor system 1 simulator involves the following 

steps: 

1The term multiproce$$Or -'!l$tem is used to include both the multiprocessor architecture and the parallel 

execution model 
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1. sequential execution on one processor. This is done to test the processor module of 

the simulator and the relevant support modules such as assembler and loader. 

2. parallel execution on one processor. This is a degenerate case, done to measure the 

overhead of parallel execution. 

3. parallel execution on two processors. This is a special case for testing interprocessor 

communication with no interference since there is exactly one sender and one receiver. 

4. parallel execution on three or more processors. This is the general case of parallel 

execution, with potential for interference on shared resources such as the memory and 

communication channels. It is also used to test the full extent of the parallel execution 

model. As more processors are added to the configuration, the saturation of shared 

resources will occur and bottlenecks will appear. 

In this chapter, we present the application of the first step of validation of a 

multiprocessor simulator, using a previously validated uniprocessor simulator as a basis 

(this first step is the foundation for the other three steps: the simulation result of each of the 

three steps is compared against the result of the first step). Since there are architecture and 

execution model variations in the two simulators, their results are compared for proximity, 

not for exact equality. The following sections provide details on the simulators and the 

validation approach. 

6.3 Simulator Descriptions 

To validate N uSim, we use a previously validated simulator, called VPsim, as a 

basis for comparison. Both simulators provide an abstract machine engine for fast execution 

of the Prolog language. This section provide a description of VPsim and its similarity and 

differences to N uSim. 

6.3.1 VPsim 

VPsim is a register transfer level simulator for the VLSI-PLM [Hol88, STN*88]. 

This chip is a VLSI implementation of a high performance engine for Prolog, a modified 

version of the abstract machine proposed by Warren [War83]. VPsim is written in the C 
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language, consisting of 4500 lines of C code and 9000 lines of microcode operations (register 

transfers, CPU operations and micro branches). 

To verify VPsim 's functional correctness, a wide variety of Prolog programs was 

run on VPsim and their results were compared with those obtained from runs on commercial 

Prolog systems such as Quintus Prolog. Because VPsim is microcode driven, the microstates 

automatically provide accurate timing, with each microstate being executed in exactly one 

processor cycle. Gate and transistor level simulations of the VLSI-PLM chip are compared 

against the results from VPsim. In the final stage, the chip is tested. It passes an extensive 

testing process and successfully executes a number of benchmark programs. 

From the perspective of our research, VPsim is a solid simulator that has been 

well tested and has been verified by the hardware. It is an available resource that can be 

used as a basis for testing other simulation systems. 

6.3.2 Simulator Differences 

Although both NuSim and VPsim essentially simulate the VLSI-PLM chip, they 

were created for very different purposes. VPsim was designed as a simulator for a very 

specific microarchitecture of a Prolog processor. Details of the VLSI-PLM microarchitecture 

are "hard-wired" into the microcode, in terms of what micro-operations are possible and the 

constraints in packing the micro-operations into a micro-state. On the other hand, NuSim 

was conceived as a more general purpose multiprocessor simulator for system integration, 

dealing at all levels from hardware architecture to software execution model. It will be used 

to experiment with different architectures and execution model tradeoffs. 

Because of the different goals in creating the simulators, there are a number of 

differences between them. These differences are identified to help us understand the dif­

ferences in performance numbers. The following are some differences between VPsim and 

NuSim (running sequential code): 

• simulation level. VPsim is a register-transfer-level, cycle-by-cycle simulation, while 

NuSim is a.n event driven simulator which steps by memory access. The clock of 

VPsim is incremented each cycle, while the clock of NuSim is incremented by a value 

obtained from table lookup plus the simulated memory access time. 

• cdr-coding. VPsim uses cdr-coding, while NuSim does not. Cdr-coding is a com­

pressed representation for list elements stored in consecutive memory locations. It 
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requires a bit to indicate if the next location is the car of the next element. Cdr­

coding is eliminated because its complexity has greatly complicated the microcode of 

the VLSI-PLM while contributing little to the overall performance [TD87]. 

• instruction fetch. NuSim does instruction fetch on demand, and accounts time for 

all fetches. VPsim does prefetching, which does not charge time for all fetches, but 

may spend time to fetch unnecessarily. 

• memory system. NuSim has a cache/memory system with realistic values for mem­

ory access time. It accounts time for cache misses and block transfers from memory. 

VPsim has single (processor) cycle memory. 

• Pro log built ins. VPsim treats some Prolog builtins (language predefined routines) as 

external functions, and ships data outside the VLSI-PLM processor for processing by 

the host. A varying amount of time is charged for the data shipment (3 to 10 cycles), 

but no time is charged for executing the external function. VPsim also implements 

some Prolog builtins in the library using VLSI-PLM assembly code. NuSim, on the 

other hand, executes all Prolog builtins inside the processor, and charges time for 

them as normal instructions. In NuSim, all builtins are written in C code. 

6.4 The Validation of NuSim 

In this section, we will compare the performance results of NuSim to those of VP­

sim to see how closely NuSim simulates a VLSI-PLM processor. Many benchmarks were 

run on both NuSim and VPsim, and their execution outputs were compared for functional 

correctness. A group of benchmarks was chosen for closer timing evaluation. These bench­

marks differ widely in static code size and dynamic memory usage and execution time. 

We have identified a number of measurements for comparison. They are: static 

code size, cycle count, simulation cost, operation count, and memory access count. Each 

type of measurement provides a different perspective of the simulation results, helping to 

understand the similarity and differences between the two simulators and at the same time 

validating the results of NuSim. 
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Table 6.1: Benchmark Code Sizes and DescriEtions 

lines of code 
Benchmark NS VP NS/VP Description 
bin tree 181 198 0.91 build a 6-node binary tree 
chat 8018 8446 0.95 natural language parser 
ckt4 468 370 1.27 circuit design for a mux2 
compiler 11409 12488 0.91 PLM compiler (compiling bin tree) 
hanoi 91 82 1.11 towers of hanoi for 8 disks 
mumath 262 251 1.04 Hofstadter's mumath problem for muiiu 
nrev1 164 109 1.50 naive reverse a 30-element list 
palin25 290 259 1.12 palindrome for a 25-character string 
puzzle 1158 1049 1.10 solve a puzzle 
qs4 249 163 1.53 quicksort on 50 numbers 
qs4..meta 487 397 1.23 Prolog meta interpreter running qs4 
queens6 283 294 0.96 6-queens problem 
query 520 520 1.00 search a simple database 
reducer 2017 2020 1.00 a graph reducer for T-combinators 
sdda 1663 1636 1.02 static data dependency analysis 
tak 69 77 0.90 solves a recursively defined function 

con1 50 46 1.09 concatenation of 3- and 2-element lists 
con6 53 48 1.10 pairwise partition of a 5-element list 
fibo 71 69 1.03 compute 5th fibonacci number 

6.4.1 Static Code Size 

Table 6.1 shows the descriptions and the static code sizes (in number of lines) for 

the same benchmark compiled using different options for execution under NuSim (NS) and 

VPsim (VP). The three smallest benchmarks ( con1, con6, and fibo) are listed separately 

at the bottom. The ratios NS/VP show that static NS code and VP code are for the most 

part well within 10% of one another. The ones that show big variances are due to the lack 

of cdr-coding in NuSim, which requires two instructions to build an element (car and cdr) 

of a list. For example, nrev1 builds a list of 30 elements before reversing it and qs.f builds 

a list of 50 elements before sorting it. 

6.4.2 Cycle Count (Simulated Time) 

The simulated cycles columns of Table 6.2 show the cycle count of VPsim and 

the ratio of NuSim/VPsim cycles, respectively. The hit ratio column shows the cache 

performance for NuSim configured to a 4-way associative, 64K byte cache with a block size 
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of 16 bytes. From these columns, we observe that: 

• Simulated time of NuSim is within 10% of that of VPsim (NS/VP simulated cycles 

are approximately 1.00) for most large programs (chat, compiler, queens6, reducer, 

and tak). One exception is ckt4, which is 14% slower under NuSim. This is due 

to differences in the implementation of instruction fetch. This will be explained in 

section 6.4.5. 

• NuSim cycle count is significantly worse than VPsim in the small programs due to 

low hit ratio (cache cold start). For example, conl, con6, and fibo have the lowest hit 

ratios among the benchmarks, measuring at 88.7%, 95.7%, and 95.6%, respectively. 

• For two programs (puzzle and query), the simulated time on NuSim is much less than 

that on VPsim. This is because these programs make extensive use of indexing on 

a term or a constant, multiplication, and division. VPsim performs these operations 

quite inefficiently (e.g., linear search for index term and shift-and-add for multiplica­

tion). 

• Non-cdr coded lists also contribute to the slight degradation in performance for small 

programs such as nrevt (which has a decent hit ratio of 98.3%). 

6.4.3 Simulation Cost 

Although the time that the simulators require to run on the host is largely inde­

pendent of the correctness of the results, it is interesting to compare simulation cost of the 

two simulators because they simulate at two different levels and follow different simulation 

methodologies. 

The following explanations refer to Table 6.2: 

• Column VP host run time provides the the time taken to run the simulator on the 

host in seconds, and column NS/VP host run time provides the NuSim to VPsim 

ratio. These numbers are obtained from running simulations on a SUN 3/60 with 

16MB of memory. These values give a feel for the response time of the simulators, 

ranging from .5 sec to 5920 sees (or 1.64 hours). 

• The simulation cost columns are provided as the ratio of cycle count (discussed in 

section 6.4.2) to host run time, assuming lOOns cycle time for the NuSim processor 



6.4. THE VALIDATION OF NUSIM 85 

Table 6.2: Cycle Count and Simulation Time 

simulated cycles hit ratio host run time (sec) simulation cost 
Benchmarks VP NS/VP NS VP NS/VP VP NS/VP 
bin tree 9875 1.30 97.8 3.5 1.43 3544 1.10 
chat 6911008 1.09 99.9 1315.9 1.01 1904 0.92 
ckt4 1109071 1.14 99.9 165.0 1.00 1488 0.87 

compiler 2208006 0.99 99.5 529.5 0.87 2398 0.87 

hanoi 78884 1.50 99.9 21.4 1.17 2713 0.78 

mumath 96907 1.26 99.8 26.2 0.92 2704 0.73 

nrev1 21192 1.38 98.3 6.1 1.31 2878 0.95 

palin25 25026 1.08 98.6 7.4 1.08 2957 1.00 

puzzle 39456475 0.67 99.9 5920.2 0.43 1500 0.65 

qs4 43190 0.98 98.9 11.9 0.92 2755 0.94 

qs4..meta 348051 1.17 98.9 113.6 0.65 3264 0.56 
queens6 808380 1.06 100.0 125.7 1.03 1555 0.97 

query 385559 0.54 99.8 61.6 0.45 1598 0.84 
reducer 2543554 1.07 99.5 439.8 1.11 1729 1.04 

sdda 85382 1.14 98.5 28.0 0.93 3279 0.82 
tak 9398259 0.96 99.2 2461.5 0.62 2619 0.65 

con1 256 2.96 88.7 0.5 6.00 19531 2.03 
con6 1307 1.52 95.7 0.7 4.29 5356 2.82 
fibo 2225 1.44 95.6 1.2 2.50 5393 1.73 

and the VLSI-PLM chip. The VP simulation cost represents a slow down factor. For 

example, a value such as 2000 in these columns means that it took 2000 seconds of 

the SUN 3/60 time to simulate 1 second of the VLSI-PLM. 

The worst numbers in the simulation cost column appear in the three smallest bench­

marks con1, con6, and fibo. This is due to the initial overhead of starting up the 

simulators. Also in the three smallest benchmarks, the simulation cost of NuSim is 

much higher than VPsim {1.73 to 2.82 times worse). This is because NuSim takes 

more time to startup, being a multiprocessor simulator and having to assemble the 

benchmark into assembly code. For the larger benchmarks, NuSim is more efficient 

than VPsim. Excluding the three smallest benchmarks, the average simulation costs 

of NuSim and VPsim are 2079 and 2430, respectively. Thus NuSim is 14% more 

efficient. 

• Even though NuSim simulates the VLSI-PLM at a slightly higher level than the 

register-transfer level of VPsim, it is not that much more efficient because VPsim 

! 
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microcode is "fiat" while NuSim C-routines are hierarchically structured. The cost of 

structured code depends on the efficiency of the code generated by the C compiler for 

subroutine calls and returns. 

Simulation of the VLSI-PLM on a SUN 3/60 is more than 2000 times slower than 

actual execution on a VLSI-PLM because of the following reasons: 

• VLSI-PLM code is represented internally as ASCII strings, which require longer pro­

cessing time. 

• Data and control transfers (the microcode) are processed sequentially. In a real ma­

chine, it would be done in parallel. The VLSI-PLM has a two stage pipeline, with the 

data unit and microsequencer executing in parallel. The VLSI-PLM data unit is also 

capable of doing 8 simultaneous transfers in one cycle. 

• The host processor is less powerful than the target processor for symbolic computation 

and the host memory access time is slower than the target memory access time. The 

SUN 3/60 that we use has a 20MHz MC68020 and 16MB of main memory (300ns 

access time). There is no cache. The VLSI-PLM is a complex processor with tag 

processing capability. 

• The code generated by the C compiler affects the execution time of the host. For 

example, inefficient subroutine calls and returns penalize the hierarchical structure of 

NuSim C code. 

• The presence of extensive instrumentation code in the simulators for extracting per­

formance results slows down execution on the host. 

• The operating system characteristic of the host can greatly affect performance. The 

SUN 3/60 runs 4.3 BSD Unix™ and virtual memory. The CPU accesses a shared 

file server connected via the Ethernet, and thus page faults are very expensive. 

The factors above blend together in the real uniprocessor system and it is difficult 

to measure them separately. This is the reason why a simulator is needed for experimen­

tation with individual system parameters. For simulating a multiprocessor configuration, 

the event driven approach of NuSim may be accelerated by use of a faster uniprocessor, or 

a multiprocessor host, as demonstrated by (Wil87b, Jon86]. For the greatest efficiency in 
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Table 6.3: Logical Inference Count 

NS VP VP/NS 
Benchmark calls escapes KLIPS calls escapes KLIPS KLIPS 
bin tree 77 151 177 128 101 232 0.76 
chat 66905 60 89 66911 55 97 0.92 
ckt4 3544 916 35 4458 3 40 0.87 
compiler 15113 7186 102 20886 2539 106 0.96 
hanoi 767 765 129 1022 511 194 0.67 
mumath 1211 82 106 1221 73 134 0.79 
nrev1 497 2 171 497 3 236 0.72 
palin25 228 97 121 323 3 130 0.93 
puzzle 19796 6018 10 21800 4015 7 1.50 
qs4 381 231 144 610 3 142 1.02 
qs4..meta 2694 720 84 3795 3 109 0.77 
queens6 3207 6130 109 9337 9 116 0.94 
query 703 2835 170 2878 661 92 1.85 
reducer 15091 6305 79 18815 2491 84 0.94 
sdda 552 408 99 715 249 113 0.87 
tak 63609 111317 195 174924 3 186 1.05 

con1 4 2 79 4 3 273 0.29 
con6 6 30 181 6 31 283 0.64 
fibo 15 23 118 36 3 175 0.68 

simulation, a direct execution approach such as the one proposed by Fujimoto [FC88] may 

be used, where the benchmark is compiled into code directly executable by the host. In­

strumentation counters are inserted by the compiler into the code to measure performance 

for the target machine. 

6.4.4 Operation Count 

In Prolog, the metric Kilo Logical Inferences Per Second (KLIPS) is often used 

for measuring the performance of Prolog engines. In this dissertation, a logical inference is 

defined as a Prolog function call, which includes the VLSI-PLM instructions cal~ execute, 

and escape for Prolog builtins. This metric is quite inaccurate since the time required 

for a logical inference can vary greatly, depending on the primitive operations required. 

The amount of work done by a Prolog function call depends on the number and type 

of arguments in Prolog. For parallel execution, the KLIPS measurement has even less 

significance. Multiprocessors may do more work but do not necessarily achieve the final 
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result any faster, if the additional computations do not contribute directly to the result. 

Table 6.3 shows the number of normal calls (and executes) and Prolog builtin 

invocations (or escapes). Since VPsim does calls to library routines for some of the builtins, 

it has a much higher calls count and fewer escape count than NuSim. In order for KLIPS to 

be a useful measure, the condition N Sco.ll + N Se•co.pe ~ V Pco.ll + V Pe•co.pe should hold true. 

The following results show that this condition does not hold, due to the implementation 

variations of NuSim and VPsim (described in section 6.3.2). 

Each of the KLIPS columns is calculated by 

calls+ escapes * 10000 
cycles 

where cycles is obtained from Table 6.2. The unit for calls and escapes is the logical 

inference. The constant factor of 10000 comes from the KLIPS unit conversion: 

KLIP 
109 nsec 1 cycle 1 K 

1 = * ·--1 sec 100 nsec 1000 

The NS KLIPS and VP KLIPS columns differ widely, showing once again the problem 

with this metric. For comparison purpose, the timing information in table 6.2 is much more 

useful than this metric. 

6.4.5 Memory Accesses 

Table 6.4 compares the number of memory accesses made in running the simula­

tions on NuSim and the VPsim. The VP total references column gives the total number of 

memory accesses, which ranges from about 100 to over 11 million. The other columns show 

the breakdown of references into instruction fetches, data reads, and data writes. 

The following can be observed: 

• The total references for most programs under the two simulators are within 20% of 

each other. The biggest variations are for con1 (2.11), con6 (1.58), and nrev1 (1.51). 

The variations are perfect examples of worst case performance without cdr-coding 

(in NuSim), which would require more instruction fetches, reads and writes. For the 

larger benchmarks, cdr-coding makes little difference. 

• For the most part, NuSim requires more instruction fetches than VPsim. This is be­

cause NuSim instructions are less compact than VPsim. They are encoded in word 
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Table 6.4: Memory References 

total references instruction fetches data reads data writes 
Benchmark VP ~ VP ~ VP ~ VP ~ 
bin tree 5601 1.19 2527 1.03 1568 1.80 1506 0.82 
chat 3695155 1.16 1376937 1.50 1158506 0.95 1159712 0.97 
ckt4 547619 1.25 149409 1.95 249946 0.97 148264 1.02 
compiler 1259778 1.07 470464 1.18 426110 1.06 363204 0.93 
hanoi 51811 1.38 21441 1.65 13776 1.26 16594 1.12 
mumath 53052 1.29 18258 1.78 18639 1.03 16155 1.03 
nrev1 8473 1.51 4812 1.97 2017 0.81 1644 1.06 
palin25 12759 1.10 5695 1.31 4114 0.89 2950 0.99 
puzzle 11600446 0.81 771251 1.59 9498654 0.72 1330541 0.99 
qs4 24302 0.93 11141 1.04 5509 0.87 7652 0.79 
qs4...meta 197469 1.13 70542 1.42 61671 0.97 65256 0.96 
queens6 504104 1.09 212691 1.24 172009 0.98 119404 1.00 
query 102771 1.01 60780 0.92 27513 1.30 14478 0.83 
reducer 1367058 1.14 462255 1.46 507144 0.99 397659 0.97 
sdda 48313 1.13 17831 1.33 16752 1.08 13730 0.95 
tak 5979238 0.83 3291760 0.66 1033643 1.18 1653835 0.96 

con1 94 2.11 55 2.07 17 2.94 22 1.55 
con6 499 1.58 163 1.84 170 1.86 166 1.04 
fibo 1207 1.10 648 1.13 215 1.24 344 0.95 

streams, with the opcode and each operand taking up one 32-bit word. VPsim has 

the code stored in string tables, but the microcode generates prefetch signals to sim­

ulate an encoding of 8-bit opcode and 32-bit arguments. Furthermore, NuSim fetches 

instructions on demand, while VPsim does prefetching. 

• The instruction fetch ratios show that the word-encoding of NuSim require more 

fetches, as expected. However, for tak, N uSim fetches much less (instruction fetch ratio 

of 0.66) because many subtractions are done and NuSim use the builtin instruction 

is/2, while VPsim does a call to the library routine st~.b/9 which require a longer 

sequence of simpler instructions. 

• The reasons for the differences in the number of data reads include: (a) cdr-coding 

in VPsim require fewer reads, and (b) solving arithmetic expression in VPsim require 

fewer reads because VPsim has simple arithmetic instructions (add and st~.btract). In 

NuSim, arithmetic expressions are put in structures and passed to the is/2 builtin. 

For the most part, the number of data writes for both VPsim and NuSim are the 
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same. 

6.5 Chapter Summary 

In this chapter, we have described an approach for validating the simulator of a 

multiprocessor system. The processor and the memory module of a multiprocessor simula­

tor (NuSim) has been validated by comparing it with a previously validated uniprocessor 

simulator (VPsim). Benchmarks of various sizes were executed sequentially on both simu­

lators, and different performance measurements were evaluated and compared against one 

another. 

Because the simulation result is a composite result of many factors, a number of 

measurements were used for comparison to obtain different perspectives on performance 

and to understand the reasons of the variations. The chosen measurements were: code 

size, cycle count, simulation cost, operation count, and memory access count. The different 

measurements indicate that the variations are significant only for the small benchmarks, 

where startup time and slight model differences are a big percentage of total execution 

time. For large programs, NuSim is within 10% of the VLSI-PLM timing. Perhaps more 

importantly, all variations can be accounted for. It can be concluded that NuSim is rep­

resentative of a VLSI-PLM in a multiprocessor system. With NuSim, the performance of 

memory management for a shared memory multiprocessor can be evaluated. 
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Chapter 7 

ELPS Simulation Experiments 

and Results 

This chapter presents the experiments done using the multiprocessor simulator 

and the corresponding results. The first part is an evaluation of the potential effect on 

performance for each of the variations to the sequential model. The second part provides 

the overall performance of the ELPS memory management scheme described in chapter 4. 

7.1 Sequential Execution Performance 

The ELPS memory management scheme uses discontiguous pages of memory to 

form a logically continuous stack. In the most general case where the addresses of the 

pages may be in arbitrary order, address comparison of two data objects in the stack to 

determine their relative order is not possible. Section 4.3.3 proposed modifications to the 

WAM to eliminate the need for address comparison. This section presents the simulation 

results from each of these modifications, to evaluate their effects on sequential execution 

performance. For the simulation runs, the cache is configured to a size of 16K words and is 

4-way associative, with a block size of 16 bytes, LRU replacement, and write back policy. 

7.1.1 Split Environment and Choice Point Stacks 

The WAM local stack is a combined stack model, which contains both choice 

points and environment. As described in Tick's dissertation [Tic87], it can be split into 
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two stacks (split stack model), one for each type of control structure. The choice point 

stack is a true stack, where the topmost choice point is always the current choice point. 

On the other hand, the current environment is not necessarily the one at the top of the 

environment stack. Splitting the two stacks has the advantage of greater access locality for 

choice points and ability to reclaim space of the choice points which may be trapped deeply 

below an environment, or of environments trapped below a choice point. Figure 1.1 shows 

a pathological example for which a split stack is much better. On the negative side, the 

split stack model has the complexity of maintaining an extra stack pointer. 

Table 1.1 shows the space and time performance of split stack versus combined 

stack. As shown in the Cycles ratio split/combined (s/c) column, the split stack model 

execution times is within 3% those of the combined stack model. With respect to space 

usage, the maximum space used by heap and trail are identical for both models. For the 

environment and choicepoint stacks, the maximum space usage of the split stack model 

is mostly the same as that of the combined stack model, with some programs having a 

maximum usage of 90% of the combined stack model (column envir+choicept (sjc)). The 

overall effect of these programs is no more than 4% (column total (sjc)). The only exception 

to this trend is the benchmark sdda, whose maximum ( environment+choicepoint) usage of 

split stack is only 56% of that of combined stack, with the overall space usage of split stack 

reaching only 73% of that of combined stack. The reason is that sdda has a section of 

code which is very similar to the example shown in figure 1.1, where the chokepoints and 

environments trap one another, preventing space from being reclaimed. 

Table 1.2 shows the memory statistics of split stack versus combined stack, which 

include cache hit ratio, bus utilization, memory references (to/from cache memory), reads 

from main memory (bus reads), and writes to main memory (bus writes). For each of 

these measurements, the value for combined stack is presented together with the ratio of 

the corresponding value of split stack over combined stack (s/c). The hit ratio is almost 

identical for both models. The split stack model results in an average of 3% more memory 

accesses. This is the effect of managing an extra stack pointer. The bus utilization goes 

down slightly for split stack. Since there is a greater degree of locality for the separate 

choicepoint stack, the number of bus reads and bus writes also decrease slightly. The zero 

value in the bus writes column indicate that the writeback cache is big enough such that 

no flushing to memory is needed. Correspondingly, the split/combined ratio column is left 

empty. 
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% Pathological example to show the advantage of split stacks 

% The program alternately creates choicepoints and environments 

% which trap one another, and doesn't reclaim space in 

% combined stack. (Courtesy of Peter Van Roy) 

?- p(100). 

p(O) 

p(N) 

p(_). 

d. 

ch. 

ch. 

:-

:-

! . 

d, I .. % create env before a cut to trap choicept for p() 

N1 is N-1, 

ch, % create choicept to trap env 

p(N1). 

Figure 7.1: Disadvantage of Combined Environment/Choicepoint Stack 
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In the program above, a chokepoint for pO is created. In the clause p(N), an environment 

is laid down before procedure d is called to store return address. When the cut (!) is 

reached, the top choicepoint pointer is moved down to a previous choicepoint, deallocating 

choicepoint for p(). However, since the chokepoint is below the environment of p(N), 

this deallocated space cannot be reclaimed. When procedure ch is called, a choicepoint 

is created for ch. When p(N1) is reached, environment for p(N) is deallocated, but space 

cannot be reclaimed because it is below choicepoint for ch. In the split stack model, no 

such trapping can occur. 
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Table 7.1: Split vs. Combined Environment/Choicepoint Stack 

Cycles Maximum Space Usage 
heap trail envir+choicept total 

Benchmark combined split/comb. combined sfc sfc 
bin tree 13508 1.00 75 5 426 1.00 1.00 

boyer 46507026 1.01 544023 95274 634 1.02 1.00 

browse 2565514 1.01 665 114 399 1.00 1.00 

chat 7673061 1.01 1518 414 2592 0.93 0.96 

ckt4 1269879 1.02 141 71 377 1.02 1.02 

compiler 2259298 1.00 4769 791 2021 0.89 0.97 

qs4 43439 1.00 658 107 85 1.00 1.00 

qs4..meta 428072 1.01 4460 1223 7504 1.00 1.00 

query 208743 1.03 12 8 58 1.00 1.00 

reducer 2788988 1.01 29052 8032 2395 0.90 0.99 

sdda 102395 0.99 938 269 1916 0.56 0.73 

tak 9384597 0.99 238530 0 200 1.00 1.00 

tp3 3369301 1.01 29223 8300 3751 1.00 1.00 

average II 1.01 o.95 1 o.98 

Table 7.2: Memory Statistics for Split vs. Combined Stack 

hit ratio bus util. mem. references bus reads bus writes 

Benchmark comb. s/c com. sfc comb. s/c comb. sfc comb. sfc 
bin tree 96.8 1.00 12.9 1.00 6730 1.02 868 1.00 0 
boyer 99.3 1.00 4.7 0.98 25672217 1.04 690916 1.00 630364 1.00 

browse 100.0 1.00 0.2 1.00 1558652 1.03 2680 1.00 0 

chat 99.9 1.00 0.6 1.00 4330329 1.04 22048 0.96 3004 0.85 

ckt4 99.9 1.00 0.2 1.00 683432 1.05 1472 1.01 0 
compiler 99.3 1.00 3.8 0.92 1353377 1.03 38664 0.94 6528 0.83 
qs4 98.5 1.00 6.2 1.02 22412 1.02 1356 1.00 0 
qs4..meta 98.4 1.00 6.8 0.99 225354 1.04 14140 1.00 504 1.01 
queens6 100.0 1.00 1.1 1.00 551963 1.03 860 1.00 0 
query 99.8 1.00 4.2 0.98 104076 1.05 800 1.00 0 
reducer 99.3 1.00 4.3 0.98 1568647 1.04 43108 1.00 26200 0.99 
sdda 97.7 1.01 9.7 0.84 54616 1.03 4944 0.83 0 
tak 98.8 1.00 8.1 1.00 4945568 1.00 239244 1.00 222740 1.00 
tp3 99.4 1.00 4.0 0.97 1915884 1.03 48888 1.00 29144 1.00 

average II 1.oo 1 o.98 1 1.o3 1 o.98 1 0.95 
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From these results, we can conclude that it is clearly advantageous to split the 

environment and choicepoint stack. We thus make use of split stack for the next two 

experiments. 

7.1.2 Always Trail 

In the original WAM model, checks are performed to decide whether it is really 

necessary to trail a binding. The binding of a variable needs to be trailed only if the 

variable is created before the current choicepoint. The check is performed by comparing 

the variable's address with the top choicepoint pointer ( B register), if the variable is a 

permanent variable on the stack, or with the heap backtrack pointer (HB register), if the 

variable is on the heap. In the split stack model, the stack variable must be compared 

with the top of the environment stack at the time that the choicepoint is created on the 

choicepoint stack. This environment stack pointer is saved in the choicepoint. The question 

of whether or not to perform the trail check is a tradeoff between type of memory access 

(read or write) and space. The trail checks require more memory reads and more time for 

the comparison, but do fewer writes and thus use less space if trailing is not necessary. 

Table 1.3 shows a comparison of selective trail (which performs trail checks) and 

always trail (which does no checking). The Cycles always trail/selective trail (a/s) ratio 

column shows that both models take about the same amount of time to execute. The 

maximum space usage for heap, environment, and choicepoint are identical for both models. 

However, the trail space usage columns shows that the lack of trail checks can lead to 

explosion in trail space usage. Program tak is an extreme case which does not trail at all 

with trail checks, and require almost lOOK words of trail space without trail checks. The 

overall space effect (column total (always/selective)) can be as high as 62% more space for 

program boyer. Perhaps most importantly, since trail space is often a very small percentage 

of overall space usage, such explosion in space usage would result in overflowing the small 

space reserved for the trail stack. 

Table 1 . .j shows the effect that always trailing has on the memory system. Always 

trailing has little to no effect on the hit ratio and the number of memory references. A trail 

check requires a read, whereas a trail operation requires a write. The excessive number of 

writes for always trailing causes the block in the cache to be flushed to memory and later 

brought back into the cache. This explains the sharp increase in bus reads and bus writes 
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Table 7.3: Always Trail vs. Selective Trail (split stacks) 

Cycles Maximum Space Usage 
heap env chpt trail total 

selective ajs sel. always ajs a/s 
bin tree 13560 1.00 75 81 345 5 51 10.20 1.09 
boyer 47059439 1.01 544023 394 255 95274 494444 5.19 1.62 
browse 2585430 0.98 665 85 315 114 470 4.12 1.30 
chat 7786363 0.97 1518 1062 1350 414 577 1.39 1.04 

ckt4 1299223 0.95 141 41 345 71 102 1.44 1.05 
compiler 2270210 1.00 4769 715 1080 791 2007 2.54 1.17 
qs4 43504 1.00 658 70 15 107 431 4.03 1.38 
qs4_meta 433001 0.99 4460 4129 3375 1223 2544 2.08 1.10 
queens6 867112 0.99 43 123 195 13 22 1.69 1.02 
query 214477 0.96 12 28 30 8 17 2.13 1.12 
reducer 2824152 0.99 29052 1100 1050 8032 15882 1.98 1.20 
sdda 101007 0.99 938 557 510 269 596 2.22 1.14 
tak 9337079 1.04 238530 185 15 0 95413 1.40 
tp3 3406891 1.01 29223 2521 1230 8300 29619 3.57 1.52 

average II o.99 1 3.27 1 1.23 

Table 7.4: Memory Statistics for Always vs. Selective Trail (split stacks) 

hit ratio bus util. mem. references bus reads bus writes 
Benchmark sel. ajs sel. ajs sel. a/s sel. ajs sel. a/s 
bin tree 96.8 1.00 12.9 1.05 6855 1.00 868 1.05 0 
boyer 99.4 1.00 4.6 1.59 26618704 0.99 690984 1.60 630532 1.64 
browse 100.0 1.00 0.2 1.00 1603985 1.00 2684 1.13 0 
chat 99.9 1.00 0.6 1.00 4494333 1.00 21132 1.01 2548 1.04 
ckt4 99.9 1.00 0.2 1.00 717937 0.98 1484 1.02 0 
compiler 99.3 1.00 3.5 1.23 1392346 1.01 36488 1.19 5420 1.51 
qs4 98.5 1.00 6.3 1.24 22766 1.00 1360 1.24 0 
qs4_meta 98.5 1.00 6.7 1.10 233582 0.99 14144 1.09 508 0.97 
queens6 100.0 1.00 1.1 1.00 568335 1.02 864 1.01 0 
query 99.8 1.00 4.1 1.05 109195 1.00 804 1.01 0 
reducer 99.3 1.00 4.2 1.24 1625630 0.99 42904 1.18 26044 1.30 
sdda 98.2 1.00 8.1 1.10 56368 0.99 4096 1.08 0 
tak 98.8 0.99 8.1 1.36 4961472 1.02 239288 1.40 222776 1.43 
tp3 99.4 1.00 3.9 1.54 1975138 1.00 48960 1.47 29164 1.73 

average II 1.oo 1 1.18 1 1.oo 1 1.18 1 1.37 
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(and correspondingly, bus utilization). 

Under static partitioning, the potential space explosion can cause serious overflow 

problems if it is not handled properly. ELPS should be able to handle this quite efficiently. 

However, the extra writes can heavily tax the multiprocessor memory system, resulting in 

performance degradation. Therefore, always trailing is not a good idea in general. However, 

it should be noted that always trailing may be a good idea in a system where: 

• memory write is as fast as memory read by employing write buffering. 

• there is hardware support for stack write optimization; that is, pushing onto the stack 

does not require reading the block from memory into cache. 

• frequent garbage collection is performed; the trail space can be quickly reclaimed, and 

thus the space explosion and excess writes will become less problematic. 

7.1.3 Put Permanent Variables on Heap 

A variable is referred to as permanent if it needs to be retained across the goals in 

the body of a clause. In the WAM model, permanent variables are put in the stack, together 

with the environment. Since the tail recursion optimization discards the environment before 

the last call in a clause, the permanent variables are copied onto the heap after this last call 

using the put_unsafe_value instruction. The WAM model requires that a variable must 

be checked to see whether it resides on the heap or on the stack for proper trail operation. 

An alternative is to immediately place the unbound variable on the heap, with the stack 

variable pointing to it. The dereference operation will always follow the pointer to the 

variable on the heap, thus it is not necessary to check for a variable on the stack. Putting 

all permanent variables on heap simplifies the trail check and eliminates the need for the 

put_unsafe_value instruction. On the negative side, it may require more heap space and 

longer access time due to the extra level of indirection. 

Table 7.5 shows the comparison between the standard WAM model and the vari­

ation of permanent variable on heap. The Cycles on heap/on stack (hp/stk) column shows 

little difference in execution times. The maximum space usage for environment and choi­

cepoint stacks are identical under both models. The heap ratio column shows an average 

increase of 18% for putting permanent variables on heap. Several programs exhibit a greater 

than 20% increase in heap space usage. For these programs, put_unsa:fe_value statically 
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Table 7.5: Permanent Variables on Heap vs. on Stack (split stacks) 

Cycles Maximum Space Usage 
en vir chpt heap trail total 

Benchmark on stack .flf on stk ~ on stk #,; .fk. 
bin tree 13560 1.00 81 345 75 1.09 5 1.00 1.01 
boyer 47059439 1.01 394 255 544023 1.14 95274 1.00 1.12 
browse 2585430 1.00 85 315 665 1.05 114 1.04 1.03 
chat 7786363 1.01 1062 1350 1518 1.17 414 0.95 1.05 
ckt4 1299223 1.00 41 345 141 1.07 71 1.00 1.02 
compiler 2270210 1.01 715 1080 4769 1.10 791 1.20 1.09 
qs4 43504 1.02 70 15 658 1.23 107 1.00 1.18 
qs4..meta 433001 1.02 4129 3375 4460 1.30 1223 1.03 1.11 
queens6 867112 1.01 123 195 43 1.16 13 1.00 1.02 
query 214477 1.00 28 30 12 1.42 8 0.75 1.04 
reducer 2824152 1.00 1100 1050 29052 1.06 8032 0.99 1.04 
sdda 101007 1.01 557 510 938 1.11 269 1.01 1.05 
tak 9337079 1.03 185 15 238530 1.20 0 1.20 
tp3 3406891 1.02 2521 1230 29223 1.41 8300 1.09 1.31 

average II 1.01 1 1.18 1 1.oo 1 1.o9 

Table 7.6: Memory Statistics for Perm. Vars. on Heap vs. on Stack (split stacks) 

hit ratio bus util mem. references bus reads bus writes 
Benchmark stk * stk * on stack ~ stk * stk * bin tree 96.8 1.00 12.9 1.01 6855 1.00 868 1.01 0 
boyer 99.4 1.00 4.6 1.11 26618704 1.01 690984 1.12 630532 1.12 
browse 100.0 1.00 0.2 1.00 1603985 1.01 2684 1.01 0 
chat 99.9 1.00 0.6 1.00 4494333 1.02 21132 1.02 2548 1.14 
ckt4 99.9 1.00 0.2 1.00 717937 1.00 1484 1.01 0 
compiler 99.3 1.00 3.5 1.09 1392346 1.01 36488 1.09 5420 1.29 
qs4 98.5 1.00 6.3 1.08 22766 1.01 1360 1.11 0 
qs4..meta 98.5 1.00 6.7 1.07 233582 1.02 14144 1.10 508 1.13 
queens6 100.0 1.00 1.1 1.00 568335 1.01 864 1.01 0 
query 99.8 1.00 4.1 1.00 109195 1.00 804 1.00 0 
reducer 99.3 1.00 4.2 1.05 1625630 1.00 42904 1.04 26044 1.06 
sdda 98.2 1.00 8.1 1.02 56368 1.00 4096 1.03 0 
tak 98.8 1.00 8.1 1.17 4961472 1.02 239288 1.20 222776 1.21 
tp3 99.4 1.00 3.9 1.31 1975138 1.01 48960 1.28 29164 1.44 

average II 1.oo 1 1.o6 1 1.01 1 1.01 1 1.20 
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occurs often in recursive procedures. However, the permanent variable does not get cre­

ated on the heap if before the put_unsafe_value instruction is reached, failure occurs or the 

variable gets bound. 

The trail usage on the average is the same in both models. The fluctuations in the 

trail column are due to three reasons: 

1. put_unsafe_value performs a trail operation when it copies a variable from the stack 

onto the heap, while the variable-on-heap model does not trail. Thus, if the variable 

is bound before the put_unsafe_value instruction is reached, both models will do the 

same amount of trailing. 

2. If the variable is still unbound, the variable-on-heap model does less trailing. 

3. The recovery of the heap is not optimal at the time of trust. trust...me_else. cut 

and cutd. The heap backtrack (HB) pointer is reset to the saved heap (H) pointer in 

the choicepoint being cut. Optimally, the heap backtrack pointer should be reset to 

the saved heap pointer of the choicepoint below the chokepoint being cut, if it exists, 

or to the heap base, if there is no current chokepoint. This optimal reset costs extra 

time for the check and possibly an additional memory read. A simple solution to this 

is to create a dummy choice point at the bottom of the choice point stack for use as 

a sentinel. 

Overall, the total space usage for putting permanent variables on the heap requires 9% more 

space on average. 

Table 7. 6 shows the memory performance of the variable-on-heap model, as com­

pared with the original WAM model. Once again, the hit ratio and the number of memory 

references are not affected by the model variation. However, the change in heap and trail 

usage causes a corresponding change in average bus utilization (6% increase), bus reads (7% 

increase), and bus writes (20% increase). 

In summary, putting variables on the heap results in 18% increase in heap space 

usage (9% overall) and 6% increase in bus utilization, but does not cost any additional 

cycles. Furthermore, it greatly simplifies the trail check operation and eliminates the need 

to copy variables from the stack to the heap when the environment is discarded. Therefore, 

we can conclude that putting variables on the heap is an acceptable variation to the original 

WAMmodel. 
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7.2 Parallel Execution and ELPS Performance 

Seven Prolog benchmark programs are chosen for our study of ELPS in parallel 

execution. These programs exhibit a variety of parallelism characteristics and memory 

usage. Table 1. 7 lists the benchmarks, their static code sizes, and a brief explanation for 

each. Prolog programs are annotated for parallel execution, compiled into assembly code, 

and loaded into the simulator. 

Table 7.7: Benchmark Code Sizes and Descriptions 

Benchmark 
boyer 
chat 
ckt4 
compiler 
qsd200 
query 
tp3 

lines of 
Prolog code 

396 
1196 
48 

2271 
18 
71 
763 

Description 
Boyer-Moore theorem prover 
natural language parser 
circuit design for a 2-to-1 mux 
a Prolog compiler 
quicksort on list of 200 data items 
multiple queries of a simple database 
Overbeek's theorem prover 

Qsd200 is a version of quicksort using a data structure called the difference list. This allows 

the two subpartitions of a list to be sorted in parallel and afterwards linked together in 

constant time. 

7.2.1 Execution Time Overhead 

Table 1.8 shows the execution times of the programs for three configurations: static 

partitioning, ELPS with hardware support, and ELPS with software only. The overhead 

percentage is computed by ( •tatac ~r;.'i.!::~ tame -1) X 100. To study the overhead of ELPS, 

the number of tasks is set to a maximum of 64 for all configurations. ELPS page size is 

set at 4K words so that overflow does not occur in most programs 1 • Furthermore, the 

multiprocessor system is configured to single cycle memory to factor out the cache effects. 

The cache effects will be considered in section 7.2.3. As explained in section 5.9, no time 

is charged for checks with hardware support, and two cycles are charged for each overflow 

check with software only. Without any overflow, the overhead of ELPS includes the extra 

time incurred by: (a) the checks for page overflow (if software only), and (b) the checks 

for variable locality (for OR-parallelism and always done in software). A variable is local 

1 Overflows occur only in boyer a.nd tp3. 
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Table 7.8: Overhead of ELPS Checking and Overflow Handling 

benchmark 
query 
qsd200 
compiler 
ckt4 
chat 
tp3 
boyer 

ar1th mean II 
geom mean 

static 
partitioning 

(cycle) 
34757 
67050 

1088084 
1468717 
2290302 
3213414 

51370794 

ELPS with 
hardware support 

(cycle) 
35969 
67610 

1101923 
1516685 
2347801 
3254666 

52008092 

(% overhead) 
3.5 
0.8 
1.3 
3.3 
2.5 
1.3 
1.2 

2.0 
2.0 

ELPS with 
software only 

(cycle) 
39142 
75788 

1190858 
1670465 
2580181 
3449535 

56096531 

(% overhead) 
12.6 
13.0 
9.4 

13.7 
12.7 
7.3 
9.2 

11.1 
10.9 
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(or internal) to a task 2 if it exists on the heap stack of that task. The linked list of pages 

forming the heap stack may need to be traversed to determine if the variable lies in one of 

the pages. 

With hardware support for overflow checking, the overhead for all programs ranges 

from 0.8% to 3.5% (2% on average). With software-only checking, the overhead is quite a 

bit higher, ranging from 7.3% to 13.7% (11% on average). Thus hardware support provides 

an average of 9% improvement in total execution time over software-only checking. 

Table 1.9 shows a breakdown of ELPS behavior. In this table, the page size is 

set to 1K for greater overflow frequency. The first column shows the average number of 

cycles between checks. The average over all programs, except query, is 87 cycles between 

checks. Query requires very infrequent overflow checks (one every 4831 cycles) because it 

spends most of the time reading a database and writes very infrequently to the stacks. The 

next two columns show the number of overflows and the average time required to handle 

an overflow. The number of overflows depend greatly on the page size. An advantage of 

ELPS is very fast overflow handling which is in tens of cycles. 

The new page request percentages (number of new page requests/number of over­

flows) indicate the degree of stack pointer movement across page boundaries. When a page 

overflow occurs for the first time, a new page is obtained. When the stack underflows to the 

previous page, the current page is retained (lazy deallocation) so that subsequent overflows 

do not require new pages. Boyer and chat are examples of opposite extreme behaviors. The 

2 Bindings to internal variables are stored in place at the specified address, while bindings to external 
variables are stored in the hashwindow (previously discussed in section 3.4.5). 
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Table 7 9· Behavior of ELPS Checking and Overflow Handling 

cycles number a vg overflow new page times 
between of over- handling requests unable 

benchmark checks flows time (%) to spawn* 

ckt4 126 0 - - 0 

query 4831 0 - - 23 

qsd200 84 1 31 100.0 137 

compiler 73 26 26 69.2 0 

tp3 80 129 15 52.7 279 

chat 68 357 2 2.5 0 

boyer 92 1851 23 98.3 93993 

* under static partitioning 

stacks in boyer primarily grow upward (98.3% new page requests), while the stacks in chat 

backtracks very frequently (only 2.5% new page requests). For chat, lazy deallocation is 

clearly advantageous. It results in an average overflow handling time of only 2 cycles. 

The last column in table 7.9 shows the number of times that new tasks could not 

be spawned because the number of tasks is limited (to 64), with all unused space statically 

allocated to other tasks. This column shows the key advantage of ELPS. With ELPS, 

memory is efficiently distributed to keep up with the demand for a very large number of 

tasks. For ELPS, this unable-to-spawn column would typically be zero. While ELPS provide 

memory space support for a high degree of parallelism, the resulting speedup depends on 

the ability of the scheduler to efficiently exploit parallelism (i.e., to spawn a parallel task 

only when the amount of work to be done by the new task is sufficiently higher than the 

overhead of task creation, communication, and termination). 

Fragmentation is another performance measure of ELPS. Internal fragmentation 

occurs when the space at the top of each page is insufficient to store the data object. 

External fragmentation is the amount of space unused on the section of the page beyond 

the top of stack pointer. Compared to a smaller page size, a larger page size will tend to 

have greater external fragmentation but less internal fragmentation. For the chosen set of 

benchmark programs, internal fragmentation is consistently very small, averaging less than 

10 words per 1K word page (less than 1%). External fragmentation varies greatly from 

program to program. Compared with static partitioning, ELPS has slightly more internal 

fragmentation (none in static partitioning), but much less external fragmentation (ELPS 
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page size is much smaller than a static partition). 

7.2.2 Parallelism Gained 

A key point of ELPS is efficient sharing of the global address space to allow a very 

large number of tasks to be spawned. An example of the degree of parallelism gained with 

more tasks is shown in figures 7.2 (a)-(d). Each graph captures the same period of time of 

the execution of boyer, a Prolog version of the Boyer-Moore theorem prover. 

In the top two graphs, the maximum number of tasks is set to 64, with ID numbers 

from 0 to 63. Each horizontal segment in figure 7.2(a) shows the period of time in which a 

task executes in some processor. With the simulated architecture configured to 8 processors, 

any vertical line has at most 8 intersection points. The diagonal slope shows the start of the 

task creations as new tasks are spawned during execution. Task space may be reclaimed 

only if that task terminates. After some time, all tasks but one go into sleeping state and 

hang on to their task space for potential future backtracking. When all tasks are used, 

execution proceeds sequentially (as shown by the long horizontal line from cycle 70000 to 

cycle 165000 of figure 7.2(a)). 

Figure 7.2(b) shows the corresponding processor utilization, with only one proces­

sor busy since time 75000. In the bottom two graphs, the maximum number of tasks is 

increased to 256 (task ID 0-255). Four times more tasks are now spawned, and all eight 

processors are kept quite busy during the specified window of time. 

Over the entire execution, boyer runs 2X faster with 256 tasks than with 64 tasks. 

However, a maximum of 256 tasks is still insufficient. When this maximum is reached, it 

runs sequentially until the end. If the parallel execution pattern is extrapolated over the 

entire run, we can expect a 4X to 6X speed up (with 8 processors and a very large number 

of tasks) over the execution run with 64 tasks maximum. 

ELPS allows for a very large number of tasks. The significant potential of advan­

tage of ELPS over static partitioning can be illustrated by a specific example. Consider a 

32-bit address space and a set of programs that use tens of words up to 1M words for each 

stack. For static partitioning, stack must be configured to the largest possible size to avoid 

overflow. If each stack is sized at 1M words, there can be at most ~ = 212 = 4096 stacks. 

Suppose that only 20% of the stacks are near the 1M-word usage while the others are less 

than 1K (such unpredictable usage is often the case for parallel execution of Prolog under 
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Table 7.10: Effect of ELPS Page Size on Execution Time 

static 
partitioning 

Benchmark (cycle) 

qsd200 97048 
query 63586 
chat 2353059 
ckt4 1554513 
compiler 1261500 
beyer 55100234 
tp3 3394992 

arith mean 
geom mean 

Overhead % of ELPS/static partitioning 
no hashing for data start 

(page sizes in words) 
512 lK 2K 4K 8K 

3.6 8.0 11.4 14.5 14.5 
6.7 8.9 12.7 26.0 26.0 
3.2 3.4 3.5 4.9 4.9 
4.4 4.4 4.3 4.9 4.9 
3.5 3.1 3.4 5.1 5.1 

- 6.9 5.3 4.6 4.1 
6.4 5.3 4.9 4.5 4.3 

4.6 5.7 6.5 9.2 9.1 
4.4 5.3 5.7 7.1 7.0 

(a) 8 slots, 128 words per slot 
(b) 7 slots, 32 words per slot 

with hashing 
8K page 

(a) (b) 

5.4 7.5 
5.2 5.3 
3.7 4.7 
4.4 4.4 
4.1 3.9 
4.1 4.1 
4.3 4.3 

4.5 4.9 
4.4 4.8 
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the PPP model). Thus 20% of the space can be partitioned into pages of 1M word each, 

while the other 80% can be partitioned into pages of lK word each. Hence, there can be at 

most ~ x 0.2 + ~ X 0.8 = 3356262 stacks, or almost 3.4 million more stacks with ELPS 

than with static partitioning. While the exact number varies with each program, ELPS 

can potentially support millions more tasks (each with one or more stacks) than static 

partitioning without the need for garbage collection or other schemes to handle overflow, 

while allowing the tasks to fully share the global address space. Currently, we are unable 

to simulate the full potential of ELPS due to memory limitations imposed by the host on 

which the simulator is run. 

7.2.3 Effect of Page Size on Performance 

Page size is a main parameter in the ELPS memory management scheme. It can 

be set at system configuration time, by specifying the value of the page mask register. In 

this section, we examine the effect of page size on performance. 

Table 1.10 shows the ratio of execution time of ELPS over static partitioning, 

expressed as an overhead percentage. Seven page configurations are chosen, ranging from 

512 words to 8K words per page. From this table, we classified the programs into three 

groups according to their observed behavior. As the page size increases, the overheads of 
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programs exhibit three distinct patterns: (1) sharp increase, (2) slight increase, and (3) 

decrease. (For the time being, consider only the columns marked as "no hashing for data 

start." The comparison to the "with hashing" columns will soon follow.) Compared to 

the tasks in the third group, the tasks in the first two groups use fairly small spaces and 

overflow very infrequently. The overhead increase (as the page size increases) is due to block 

collisions in the caches. In the third group, the tasks use very large spaces and the overflow 

very frequently. Thus the larger page size results in fewer overflows and faster execution. 

The block collision in the caches can best be explained with the specific cache 

parameters. Our simulation has a cache configuration of 16K word cache size, 4-way asso­

ciative, and 4 word block size. Thus, there are 1K cache sets3 , each set having 4 slots. H 

the ELPS page size is 1K, the first location of all pages will fall in the same cache set. H 

the page size is 512, the first location of every other page will fall in the same cache set. In 

the worst case, a page size of 4K or greater will fall in the same cache set and will occupy 

all four slots in the set, thus requiring frequent flushes to memory to free up the slots. This 

flushing increases bus activity and slows down execution. This collision is most serious for 

programs with very small task spaces (as those in group 1), since most accesses would be 

done near the stack bases. For programs with larger task spaces (as those in group 2), this 

collision makes little difference (less than 2% ). 

There are two possible types of collision in the cache blocks. Internal collision 

occurs when the low bits of the cache blocks of one stack are identical to those of another 

stack belong to the same task. This case is most serious for caches where the associativity 

is less than the number of stacks in a task. External collision occurs when when the stacks 

belong to different tasks. In our 4-way associative cache, internal collision is not a problem 

for the four stacks in a task. On the other hand, external collision occurs when a processor 

executing a new task needs to flush out data from previous task to make room for the 

new one. When an old task- or a new task which reuses the old space of a terminated 

task - is swapped in, its stack space needs to be loaded into the cache from memory. 

Much of this extraneous bus traffic can be reduced by a more intelligent cache system such 

that: (a) a stack push operation does not need to read the block in from memory, and (b) 

the cache blocks of a task that has been killed should be invalidated. Such cache system 

has been implemented on sequential architectures for Prolog (PSI-II [NN87] and Berkeley 

3 number of cache sets = cache size I block size I a.ssocia.tivity = 16K I 4 I 4 
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Abstract Machine (BAM) [HSC*90]) and on parallel logic programming architectures (by 

Goto [GMT89]). 

Both types of collisions can be controlled by using a hash function to vary the 

starting address (in an ELPS page) for data storage. The space between the lowest address 

of the page and starting address for data storage would be left unused. The following 

hashing function was used to determine the offset for the starting address: 

offset = (page number mod number of slots) X slot size 

The two parameters number of slots and slot size determines the behavior of the cache 

collision. A large slot size reduces internal collision, while a large number of slots reduces 

the external collision. The product (number of slots x slot size) is the amount of space 

left unused in each ELPS page. 

Consider the two columns labeled as "with hashing" in table 7.10. Compared with 

no hashing, the hashing scheme eliminates the sharp overhead increase of ELPS in the small 

programs ( qsd200 and queryO). Furthermore, various parameters for the hashing function 

(columns (a) and (b)) make little difference on performance. Thus a small number of slots 

and a small slot size can be chosen to minimize unused space. 

Figure 7.9 graphs the arithmetic mean an the geometric mean of the overheads 

with respect to page size. Because the page size of 4K is the saturation point (where all four 
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Table 7.11: Effect of ELPS Page Size on Overflow Frequency 

number of overflows average overflow handling 
time (in cycles) 

Benchmark 256 512 1K 2K 4K 8K 256 512 1K 2K 4K 8K 
ckt4 0 0 0 0 0 0 
query 0 0 0 0 0 0 
qsd200 10 4 1 0 0 0 22 22 31 
chat 4395 1720 357 0 0 0 2 2 2 
compiler - 141 26 4 0 0 14 26 39 
tp3 - 375 129 52 21 7 11 15 19 23 40 
boyer - - 1851 915 458 228 23 26 30 37 

Table 7.12: Effect of ELPS Page Size on Internal Fragmentation 

internal (between pages) fragmentation 
Benchmark 256 512 1K 2K 4K 8K 
ckt4 0 0 0 0 0 0 
query 0 0 0 0 0 0 
qsd200 6 2 0 0 0 0 
chat 32363 14914 621 0 0 0 
compiler 776 16 6 0 0 
tp3 1145 542 81 34 4 
boyer 316 220 104 32 

slots in the 4-way associative cache set are filled), the overhead peaks at a page size of 4K. 

This is also the reason for the sharp overhead increase when the page size increases from 2K 

to 4K. For boyer and tp3, the overheads continue to decrease as page size increases, while 

for all other programs, the overheads level off at page size of 4K or greater. 

Another important measure of ELPS performance is the frequency of overflows. 

Table 7.11 shows the number of overflows and the average overflow handling time for each of 

the various page configurations. The number of overflows decreases rapidly as the page size 

increases, as more task spaces can be captured in a page. The average overflow handling 

time increases slightly as the page size increases, since these overflows are more likely to 

request a new page. Due to the extremely fast overflow handling time (in tens of cycles), 

the total time required to handle overflow contributes little to the overall execution time. 

Internal fragmentation is the number of words left unused at the end of a page 

because a structure does not fit on the existing page. Table 7.12 shows the cumulative in­

ternal fragmentation for the different page configurations. Internal fragmentation decreases 
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very rapidly as the page size increases, and thus is insignificant. 

7 .2.4 Allocation and Deallocation Strategies 

The implemented strategy of on-demand allocation and lazy deallocation performs 

very well (as expected). For programs with a high degree of backtracking, lazy deallocation 

is clearly superior to eager deallocation. However, for programs that have a very high space 

usage, eager deallocation may help distribute the free space more efficiently. In general, the 

dynamic nature of Prolog tasks makes it very difficult to predict stack usage. A reasonable 

strategy is to retain one empty page while releasing the others to the free list. This one 

page buffer would prevent performance degradation due to fluctuations at a page boundary. 

7.3 Discussion 

With the functionally correct execution of Prolog programs, we have shown the 

feasibility of ELPS, a hybrid heap-stack mechanism designed to allow efficient sharing of 

the global address space and efficient space reclamation. The heap style allocation of small 

segments distributes the limited shared space to where it is needed most, and the stack 

structure allows for fast space reclamation without the need for garbage collection in many 

cases. ELPS solves the "sleeper task" problem of PPP, where tasks that have alternative 

clauses for possible future backtracking tie up the task spaces allocated to them. By al­

locating only a small amount of space each time, millions more tasks may be created to 

exploit the potential for parallelism. ELPS has been implemented on a simulated multi for 

parallel execution of Prolog. 

Since all ELPS pages have their starting addresses with the same lower order bits, 

collision in the cache blocks can potentially be a serious problem. Fortunately, this problem 

can be solved with a simple hashing scheme to start data storage on a page at various 

offsets. A more complete solution is to design more intelligent caches for stacks such that: 

(a) a stack push operation does not need to read the block in from memory, and (b) the 

cache blocks of a task that has been killed should be invalidated. 

The overhead of ELPS is 2% with hardware support and 11% with software only. 

With a cache system, the overhead of ELPS is around 5% with hardware support, due to 

some amount of block collisions in the cache. With software only, the overhead remains 
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at around 11% because the software check is internal to the processor (does not generate 

cache or bus traffic) and the execution time is dominated by memory access times. 

For optimal performance, the ELPS page size should be set a.t system configuration 

time such that (a) it is smaller than the number of cache sets to reduce the frequency of 

collision and cache flushes, and (b) it is sufficiently larger than the largest structure. ELPS 

provides the memory management needed to keep up with the memory demand for parallel 

execution, thus increasing the degree of potential parallelism. To obtain a high overall 

speedup, proper scheduling and granularity control must be coupled with this potential for 

a very large number of tasks. 

In addition to parallel execution of Prolog, ELPS may be used a.s the memory 

management scheme for very large scale shared memory multiprocessors which use the 

multi as a building block. From this viewpoint, ELPS has the following advantages: 

• Dynamic allocation and efficient utilization of the shared address space frees the pro­

grammer from the concern of memory management. The memory manager can enforce 

locality by having multiple free-page-lists, one for each group of processors. 

• Detection of overflow upon allocation of space on stack provides a. more robust system. 

Some Prolog implementations that use static partitioning ha.s no provision for stack 

overflow checking. 

• The explicit links require no special hardware mechanism for address translation. 

• By storing the links with the pages and not together in a. table, contention on memory 

or cache block for different table entries is eliminated. 

• By associating a task space with a. task and not with a processor, the scheduling of 

tasks onto processors is more flexible and task migration is more efficient. 

For more complete memory management, ELPS ma.y be integrated with a. garbage 

collector to reclaim unused space within each page. In sequential execution of Prolog, most 

objects do not survive the first iteration of garbage collection [TH88]. In parallel execution, 

when a task terminates with no more alternative solutions, its entire space can be discarded. 

Due to the memory usage nature and the highly dynamic life times of the parallel tasks, an 

local garbage collector should do well in reclaiming unused space and not interfere with the 

execution of other tasks. One possible approach is to collect only data. areas not shared by 
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other tasks. In the PPP model, this unsha.red area is the local data space used by a task 

before it spawns any children. 
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Chapter 8 

Aquarius-11: A Two-Tier Memory 

Architecture 

8.1 Introduction 

In the previous chapter, we evaluated the space and time aspects of memory per­

formance of a shared memory bus based multiprocessor. In this chapter, we explore an 

alternative memory architecture to increase memory bandwidth. 

The bus is the simplest interconnection network that implements a "dance hall" 

shared memory (figure 2.1). With caches local to each processor, this structure is called a 

"multi" by Bell [Bel85] (figure 5.4). It can provide high performance at relatively low cost. 

The caches are kept consistent by hardware protocols, thus freeing the programmer from 

the concerns of managing the memory hierarchy details. 

In a multi architecture, two types of memory interference can degrade memory 

performance: 

• Multiple access interference occurs when two or more processors need to access main 

memory. The processors arbitrate for the bus and their memory accesses are serialized. 

The processors remain idle while waiting for the memory operation to complete. 

• Lock interference occurs when the bus is being locked up by a processor for an atomic 

read-modify-write operation. Other accesses to memory are suspended until the bus 

is released. Such an atomic operation is necessary to synchronize the processors that 

are executing in parallel. 
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As the number of processors is increased, the frequency of these memory interferences 

increases and the bus becomes a more serious bottleneck. 

In this chapter, we describe Aquarius-II, a multiprocessor in the "dance hall" 

shared memory category. Aquarius-II contains two tiers of memory designed to reduce 

memory interference and to increase the processor-memory bandwidth. The first tier, called 

synchronization memory, is a multi with coherent caches, used to store synchronization 

data such as locks and semaphores. The second tier, called high-bandwidth {HB) memory, 

contains a high-bandwidth interconnection network to memory (such as a crossbar). There 

are HB local caches for each processor, but they are much simpler than the snooping caches 

of synchronization memory. The HB memory is used to store the bulk of the application 

program's code and data, as well as the operating system. 

8.2 High Performance Memory Architectures 

For any architecture, the memory system is potentially a major bottleneck since 

the access time of a large and economically feasible memory system is 3 to 5 times slower 

than processor cycle time. This gap is much larger for supercomputers with very short cycle 

time. 

Previous studies [Smi82] have shown that cache memory is a cost effective way 

to substantially improve performance. For example, the Convex's C-1 [Wa185], a Cray-15 

like processor, achieves one fifth the performance of a Cray-15 [SA83] at one tenth of the 

cost. It uses a large cache (64K bytes), a slower technology (CMOS), a slower memory, and 

pipelining. The instruction and data caches in the Convex's C-1 play a key role in providing 

performance even though memory is slow and the memory bandwidth is limited. 

Various multiprocessor memory architectures have been employed to obtain high 

memory bandwidth. Current high-speed multiprocessor systems often contain a fully con­

nected network called the crossbar. The hardware cost of a crossbar switch is proportional 

to the square of the number of processors (assuming an equal number of memory modules). 

Because of this, the crossbar is used primarily in systems with a small number of processors 

(e.g., C.mmp and Burroughs B7700 [Sat80]). For a larger number of processors, a multistage 

network (e.g., the Omega Net in Ultra computer and shuffle exchange in Cedar) is used to 

reduce cost and to increase fault tolerance. These systems either do not employ caches due 

to the problem of multiple cache coherency associated with the particular interconnection 
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Figure 8.1: The Aquarius-11 Multiprocessor Architecture 

network, or restrict the use of caches to read-only and non-shared read-write data. The 

medium-speed multiprocessors, usually called super-minis, contain caches with hardware 

coherency protocols. To keep the cost low, the caches are connected to a single bus. In this 

case, the caches are more efficiently utilized, but the single bus connection to memory is 

a major bottleneck as the number of cache-processor nodes connected to the shared bus is 

increased. 

8.3 The Aquarius-11 Architecture 

To reduce memory interference and to have both fast synchronization accesses and 

high-bandwidth data accesses, we propose a two-tier memory system which contains two 

separate memory spaces: a synchronization memory and high-bandwidth (HB) memory. 

8.3.1 Synchronization memory 

The synchronization memory is the upper tier shown in figure 8.1. The synchro­

nization caches are connected to synchronization memory via a bus. There have been a. num­

ber of proposals for multiprocessor cache coherency for a single bus [Goo83, AP84, KEW*85] 

using a variety of protocols, all of which require monitoring the bus and broadcasting the 
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data to caches and to memory. Bitar [BD86] has extended Goodman's snooping cache for 

more efficient locking. Bitar's scheme employs a cache lock state that reduces traffic on 

the bus, in addition to having one less memory access than the conventional test-and-set 

scheme for scalars. This scheme requires 3 state bits associated with each cache block and 

allow for cache-to-cache transfers for update or invalidate. Such a scheme is vital to fast 

synchronization accesses. 

The synchronization memory is used for storing synchronization information and 

status information. Synchronization information consists of event flags, lock variables, and 

semaphore variables. The status information contains the status of resources such as pro­

cessors and buffers, control flags such as modify, reference, and valid used in caches, and 

mail boxes. The separation of memory results in fast access to synchronizing information 

since memory requests need not wait for the completion of a long data transfer. 

The bus monitoring and broadcasting mechanisms needed to implement fully dy­

namic cache coherency protocols requires complex hardware, and the single shared bus to 

synchronization memory can be a serious bottleneck. The smaller sizes of the synchroniza­

tion memory require simpler hardware circuitry (for cache and memory designs) that result 

in lower design cost and faster address decoding. Since synchronization memory is used 

only for synchronization and status information, it should be a small fraction of the total 

memory address space (less than 10%). 

8.3.2 High-bandwidth Memory 

The vast majority of the memory space (90%) is in the second of the two tier 

memory, called the high-bandwidth memory. This second tier provides a very high processor­

memory bandwidth by using a high-bandwidth interconnection network to connect the 

processors to the memory modules. For a multiprocessor system with a small number (16 

or less) of processors, a crossbar is most appropriate since it provides the highest possible 

bandwidth with reasonable cost. The crossbar switch should contain an arbitration unit that 

resolves conflicting memory requests to the same memory bank in a fair manner (starvation 

free) [Sri88]. For systems with higher number of processors, a lower performance but less 

expensive interconnection network such as the Omega network [Gea83] is more suitable. 

To further enhance the performance of the high-bandwidth memory, a cache is 

placed in between the processor and the interconnection network. These caches greatly 
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Figure 8.2: Multiprocessor Architecture with Caches at Each Crossbar Switchpoint 

increases the complexity of the memory system due to the cache coherency problem. In 

order to keep the crossbar switch as simple as possible, we have chosen to put a cache at 

each processor (figure 8.1) instead of a cache at each switch point of the crossbar, as shown 

in figure 8.2. The topology of figure 8.2 is equivalent to having a very high number of buses, 

each of which having the complexity of a synchronization bus. 

8.3.3 High-Bandwidth Memory Cache Coherency 

A number of solutions have been considered for the cache coherency problem for 

the high-bandwidth memory. The goal is to avoid the hardware cost and complexity of the 

full snooping and cache-to-cache transfer protocols. In this section, two such schemes are 

discussed: software scheme by restricted caching and hardware broadcast for invalidation. 

Restricted Caching 

The simplest way to resolve the cache coherency problem is to avoid it completely 

by restricting caching to read-only and non-shared read-write data. Software arrangement 

of data space, combined with some hardware support in the individual caches, is done to 

make sure copies of a writable cache block is not allowed in more than one cache at any 
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given time. 

This restricted caching scheme, called singly cacheable protoco~ can be imple­

mented with each cache having a cacheable address table (using associative memory) which 

contains the address ranges that are cacheable by that cache. If a memory block is cacheable 

by a particular cache, when a cache miss occurs, that data block is fetched from memory 

and is stored in the cache. Subsequent reads to this block gets data directly from the cache, 

and subsequent writes may either write-back to cache only (ifthe data is local to a task), or 

write-through to both the cache and the memory (if it is potentially used by other tasks). 

If a memory block is non-cacheable by a particular cache, it is never stored in the cache 

and all references to it require going to the memory. 

The cacheable address table in each cache contain the address ranges for the code 

space (read-only) and the address ranges of the local data spaces of the tasks that are 

assigned to the processor. The scheduler assigns a task to a processor, and the task is to 

be executed by that same processor until termination. When a task is moved from one 

processor to another (task migration), the cache in the old processor must be flushed, and 

the task's local data space address ranges must be moved from the old processor's cacheable 

address table into the new processor's cacheable address table. 

The main advantage of this restrictive caching scheme is that no communication 

among the caches is necessary, avoiding the need for complex circuitry for bus monitoring 

and broadcasting. Furthermore, the caches are completely independent of each other, and do 

not interrupt each other for invalidation or update. For some applications, these advantages 

may be overshadowed by the performance penalty of higher miss ratio due to non-cacheable 

blocks and more accesses to memory are necessary for the write-throughs. However, the 

crossbar provides some relief by having a very high processor-to-memory bandwidth to 

handle this memory traffic. 

Broadcast for Invalidation 

To increase the cache hit rate, the HB caches can be extended to allow caching of 

all memory blocks. Instead of the full coherency mechanisms used for the synchronization 

caches, simpler invalidation buses can be used to keep the HB caches consistent. Upon a 

cache read miss, the data block is loaded into the cache from memory. When this data 

block is modified, the cache broadcasts this write by putting the address of the modified 



118 CHAPTER 8. AQUARIUS-II: A TWO-TIER MEMORY ARCHITECTURE 

block onto the invalidation bus. The other caches constantly monitor this invalidation bus 

for an address in their own directories. If a cache contains a copy of the data block, it 

will invalidate its own copy, and its next access to this data block has to get data from 

memory. If the cache does not contain a copy of the data block, its normal operation is 

uninterrupted by the traffic on the invalidation bus. Furthermore, invalidation involves only 

clearing the valid bit for the block in the cache directory, and may be done concurrently 

with some other cache accesses which do not alter the directory (assuming 2 read ports for 

the cache directory). Bus traffic can be reduced by having a private cache state for cache 

blocks owned by only one processor. No broadcast for invalidation is needed for writes to 

private cache blocks. 

The separation of the broadcast mechanism from the crossbar keep the crossbar 

switches simple while allowing a flexible number of invalidation buses to be used. Each 

invalidation bus is much simpler than the synchronization bus since it is only for the address, 

whereas the synchronization bus is for both address and data. Each invalidation bus is 

used for a different address range, so a simple demultiplexer can be used to choose the 

appropriate bus for the address to be broadcasted. If there are multiple requests by the 

caches to broadcast on the same invalidation bus, these caches must arbitrate for the bus in 

the same way that the synchronization caches arbitrate for the synchronization bus. With 

a greater number of in validation buses, each bus will cover a smaller address range, thus 

resulting in less probable contention for any given bus. Each invalidation bus requires a bus 

monitor unit in each of the caches to monitor traffic on the invalidation line. 

8.4 Parallel Execution of Prolog 

Studies by Eggers and Katz [EK87] analyzed the memory reference patterns of 

write shared data in several parallel applications coded in FORTRAN. Their trace simu­

lation results show very small percentages of write shared data (less than 2% ). For the 

two-tier memory system, this would mean very low demand on synchronization memory 

and thus the one synchronization bus is sufficient to support this traffic without much con­

tention. We wish to analyze a more complex programming paradigm to evaluate how it 

can be supported architecturally with the two-tier memory model. Our language of choice 

is Prolog. In this section, we present the usage for the two-tier memory system for par­

allel execution of Prolog. In particular, the PPP execution model [Fag87] is analyzed for 
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implementation on the Aquarius-IT. 

8. 4.1 Synchronization Characteristics 

Prolog has some unique features compared to the languages of other programming 

paradigms such as Lisp (functional programming) or FORTRAN (imperative programming). 

Prolog variables are single assignment, which once given a value will never be changed. This 

is very suitable for parallel processing since a variable that has been written becomes read­

only, and no synchronization for writing is required. This can be characterized as single 

writer, multiple readers, and read-only after write. 

Except for the global database in Prolog which resides in the code space, all Prolog 

variables are local to a Prolog clause and are explicitly passed from one procedure to another. 

This simplifies the task of detecting the communication between parallel tasks in which the 

procedures are executed. For the rest of this section, we review the PPP execution model 

that was previously described in section 5.4.4 (Task Kernel Module). 

The PPP execution model contains two kinds of tasks: AND tasks and OR tasks. 

Each task has a task control block, called a task table entry, which contains the state of the 

task, base addresses of the task data space, and various links to the parent task. Each task 

also has its own data space for private and read-shared data. 

OR-tasks are used to execute the multiple clauses of a procedure. Each OR­

task contains its own binding area (called a hash window) to store the variable bindings 

that would conflict with other OR tasks. These bindings are seen by the task's parent by 

means of dynamic linking of the hash windows. Even though the clauses of a procedure 

are executed in parallel and out of order, the results obtained from them are serialized to 

maintain standard Prolog semantics. 

AND tasks are used for executing AND-parallel subgoals that are independent 

of each other; that is, they cannot attempt to bind the same variable during execution. 

Subgoal independence is determined statically, by programmer's annotations and/or by 

data :fiow analysis (such as static data dependency analysis (SDDA) [Cha85, Cit88]; the 

general technique is known as abstract interpretation [BJCD87, WHD88]). The AND tasks 

do not have their own hash windows, but instead they share the hash window of their closest 

OR ancestor. 

The task creation, context switching, and termination tasks are distributed among 
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Physical Memory ArchitectJUe 

Logical DaJa Space 

Figure 8.3: Mapping of the PPP Storage Model onto the Two-Tier Memory System 

the processors, synchronized by mutually exclusive accesses to shared queues. A processor 

executing a task performs all the tasks needed to spawn a child task, from reserving task 

space in memory to writing out the new task state and putting it in a ready-queue. An 

idle processor removes a runnable task from a ready-queue for execution. A terminating 

task frees up its own task space by putting the task space in a free-task-list. A task goes 

to sleep by swapping itself out of the processor, and gets awakened by another task moving 

it into the ready-task-queue. The tasks communicate via synchronized accesses to shared 

memory. 

8.4.2 Mapping of PPP onto Aquarius-11 

Figure 8.3 shows the mapping of the code and data spaces of the PPP Execution 

model onto the two-tier memory system of Aquarius-H. The task tables, the hash windows 

and the global heap (containing join tables and children task identifiers) are stored in the 

synchronization memory, either because these data are shared writable and require locking 

or because they are modified often and need the cache to cache data transfer capability of 

the synchronization bus. 

On the other hand, the code space and the local data space reside in the high­

bandwidth crossbar memory. The code space is for the most part read-only, and the local 

data space is mostly locally writable by the owner task, and read shared by other tasks. 
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8.5 Chapter Summary 

In this chapter, we described the two-tier memory architecture of the Aquarius-II, 

designed for both fast accesses to synchronization data and high memory bandwidth. The 

first tier, called synchronization memory, is a multi memory architecture, with caches local 

to each processor and connected to memory via a single bus. The caches are kept consistent 

using hardware coherency protocols. The second tier, called high bandwidth (HB) memory, 

contains caches local to each processor connected to memory via a crossbar. Two general 

coherency protocols have been proposed to keep the crossbar caches consistent: restricted 

caching and broadcast for invalidation. Restricted caching is done primarily in software, 

while the broadcast scheme needs an additional invalidation bus and bus monitoring circuit. 
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Chapter 9 

Aquarius-11 Simulation Results 

How much performance improvement can be obtained by separating the synchro­

nization data from others? This can be answered by evaluating the bus traffic and the 

synchronization behavior of parallel execution. This chapter provides the simulation results 

of the two tier memory in comparison with the single bus memory. 

9.1 Simulation Parameters 

To compare the performance of a two-tier memory architecture to a single bus 

cache coherent system, the NuSim simulator (described in chapter 5) is set up to simulate 

two such systems. The multiprocessors are configured to 8 processors. The cache of the 

Single Bus (SB) memory is 64 Kbyte, 4-way associative, with 16 byte blocks. The relative 

speed of the bus is set at a (fast) 1 processor cycle for arbitration and two cycles for 

broadcasting. Main memory is also set to be very fast, requiring 2 cycles for first byte and 

1 cycle for subsequent bytes in a block. 

The Two-Tier system consists of the synchronization bus (SB) memory, which is 

identical to the Single Bus system above, plus the high bandwidth (HB) memory containing 

the crossbar. A memory request from the processor is multiplexed into one of the two tiers 

of memory (simultaneous access to both tiers is not allowed). Lock/unlock accesses and 

read/write accesses to shared data structures are channeled into the SB memory, while all 

other memory accesses are channeled into the HB memory. Two simplifying assumptions 

are made regarding the crossbar: no memory bank conflict and single cycle access delay. 

These assumptions are made to study the maximum improvement potential of the two-tier 



9.2. MEMORY ACCESS BEHAVIOR 123 

Table 9.1: Access Ratios for Shared and Local Memory Areas 

Percentage over all types of accesses 
Benchmark code local data shared data locks 

count time count time count time count time 
boyer 42 22 42 33 13 37 3 9 
chat 46 50 54 50 0* o· 0* 0* 

ckt4 31 16 44 38 20 34 5 12 
compiler 28 33 43 42 24 21 4 4 

qsd200 45 21 43 34 9 36 2 10 

queens6 42 22 48 35 5 18 1 5 

query 45 27 28 16 12 22 1 4 
tp3 51 41 42 41 6 15 1 3 

average II 41 29 1 43 36 1 n 23 1 2 6 

• close to 0, much less than 1 

Table 9.2: Average Access Time for Shared and Local Memory Areas 

Average access time (in cycles) 
Benchmark code local data shared data locks 
boyer 1.7 2.5 9.3 10.9 
chat 1.2 1.1 7.5 6.9 
ckt4 1.0 1.8 3.4 5.0 
compiler 1.5 1.2 1.1 1.1 
qsd200 1.2 2.0 9.6 12.9 
queens6 1.1 1.5 7.1 12.3 
query 1.5 1.4 4.5 9.8 
tp3 1.2 1.4 3.9 4.5 

average II 1.3 1.6 5.8 7.9 

architecture over the single bus architecture. 

Eight Prolog benchmark programs are chosen for our simulation study. These 

programs exhibit a variety of parallelism characteristics and locking behavior. Table 1. 7 (in 

chapter 7) showed the list of benchmarks, their static code sizes, and a brief explanation 

for each. 

9.2 Memory Access Behavior 

To observe the memory behavior of parallel execution of Prolog, the benchmark 

programs were run on the single bus system. Table 9.1 shows the access ratios for the various 
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Figure 9.1: Average Access Percentages of Shared and Local Memory Areas 

shared and local memory areas while table 9.2 shows the average access time of accesses to 

each memory area. Count is the number of accesses and time is the access time required. 

The values in table 9.1 represent the percentage of accesses for that area over all areas. For 

example, 42% of the memory accesses in boyer are to the code area, but they require only 

22% of the total memory access time. On the average, code access is frequent and fast ( 41% 

of count, 29% of time, and 1.3 cycles per access). This is because code is read only and 

may be reused often (in the case of recursive calls), resulting in better cache performance. 

Compared to code access, local data access is a little more frequent ( 43% count) and a 

little slower {1.6 cycles) while shared data access is much less frequent (11% count) and 

much slower (5.8 cycles). Lock access is the least frequent (2% count) and the slowest 

(7.9 cycles). The access count and the access time for locks depend on the synchronization 

needs of the programs. Ckt4 requires frequent communication among parallel tasks that 

explore different circuit designs, while the chat parser has tasks that operate on independent 

sentences, requiring little communication. Compiler shows an interesting behavior in that 

the average access time for shared data and locks is only 1.1 cycles. This is because the 

shared data is the very large block of object code generated by the compiler. Access to this 

block is very localized, with each task contributing a small portion to make up the whole 

block. Block copying is very fast and has high cache hit ratios. 
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Table 9.3: Execution Time and Bus Utilization of Single Bus vs. Two Tier 

cycles speedup bus utilization 

Benchmark single bus two tier ~ single bus two tier %change 

boyer 74016 58002 1.28 0.75 0.58 -23 

chat 2353059 2271477 1.04 0.09 0.00 -100 

ckt4 1866705 1656694 1.13 0.40 0.29 -27 

compiler 1261500 1092355 1.15 0.19 0.03 -84 

qsd200 97048 80502 1.21 0.50 0.37 -26 

queens6 218178 188748 1.16 0.72 0.66 -8 

query 63586 55417 1.15 0.76 0.64 -16 

tp3 295042 257045 1.15 0.16 0.08 -50 

average II 1.16 0.45 0.33 -26 

The bar graphs in figure 9.1 show the relative frequency of accesses among the 

four memory areas and the relative percentages of time required. For code and local data, 

the time bar is below the count bar. For shared data, the time bar is twice that of the count 

bar. For locks, this ratio is three. While locks make up from much less than 1% to 5% of 

the access count, they can take up to 12% of the access time. More importantly, they can 

hold up the bus, thus blocking out other unrelated accesses (particularly those accesses to 

local data). The two tier memory resolves this problem by diverting local data accesses to 

the HB memory. 

9.3 Execution Time of Single Bus vs. Two Tier 

Table 9.9 compares the execution time and the bus utilization of the single bus 

with those of the two tier memory. The speedup column shows the ratios of single bus 

execution time over two tier execution time. With code and local data accesses diverted 

to a different path, execution on the two tier memory shows modest speedups of 1.04X to 

1.28X (1.16X on the average). As expected, those programs with the highest percentages 

of lock accesses show the greatest speedups. The (bus utilization) single bus column shows 

the potential bottleneck of the single bus memory, while the two tier column shows the bus 

utilization due to shared data and locks only. The last column shows the percentage of 

change (decrease) in bus utilization when the two tier memory is employed. The percentage 

of bus accesses due to code and local data range from only 8% for queens6 to nearly 100% 

for chat. The average decrease in bus utilization is 26%. This explains the long access times 
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for shared data and locks compared to code and local data. Programs that have a high 

percentage of bus utilization due to code and shared data benefit the most with the two 

tier memory. 

9.4 Parallel Execution Behavior 

Figures 9.2 and 9.3 show the run times of the tasks generated in the execution of 

two programs: quicksort and queens6. In each graph, the vertical coordinate contains the 

task IDs, ranging from 0 to 63, and the horizontal coordinate contains the time in units of 

processor cycles. Each continuous horizontal segment represents a period of time in which 

the task is being run in a processor. There are at most 8 tasks executed at any given time, 

one in each processor. The other tasks wait in the ready queue for idle processors. 

The graphs of the two benchmarks are selected to show varying behavior of parallel 

execution: quicksort running in AND-parallel and queens6 running in OR-parallel. As 

shown in figure 9.2, quicksort behaves very regularly, with each task spawning one additional 

task to work on one of two partitions, while the parent task continues execution with the 

other partition. The join operation occurs after each of the subpartitions has been sorted. 

The long segment for task 0 starting at time 0 indicates that a large chunk of time is spent 

in sequential execution, and that is a deterrent to overall speed up when the number of 

processors is increased. With 8 processors, parallel execution on single bus results in a 

2.1X speed up over sequential execution. Parallel execution on the tw~tier results in 2.6X 

speed up, approaching the theoretical limit of 3X speed up for a balanced tree (log 28, for 8 

processors). 

On the other hand, queens6 executes in a quite random manner, as shown in 

figure 9.3. The program searches for board positions to place non-attacking queens. It 

backtracks to alternative search paths when the current path fails to give a solution. Space 

and IDs of terminated tasks are reused for new tasks. There is a high degree of parallelism 

in queens-6, but the overall speed up is limited by the number of processors, the contention 

on the single bus and the adherence to standard Prolog semantics (ordering the returned 

solutions of the OR-tasks from left to right). With 8 processors, parallel execution on single 

bus is 4X faster than sequential execution, while parallel execution on tw~tier is 4.6X faster 

than sequential execution. 

For each benchmark, the patterns of parallel execution on single bus and on two 
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Table 9 4: High Bandwidth Memory Access Locality 

Percentage over all accesses 
internal external est. max 

Benchmark read write read write hit ratio 
boyer 69.3 20.9 7.6 2.2 90.2 
chat 68.1 23.2 6.2 2.5 91.3 
ckt4 69.6 15.0 9.8 5.6 84.6 
compiler 66.5 22.1 8.9 2.5 88.6 
qsd200 62.8 16.9 9.9 10.4 79.7 
queens6 74.4 19.7 4.7 1.2 94.1 
query 81.5 7.0 9.1 2.4 88.5 
tp3 61.5 12.2 15.5 10.8 73.7 

average 11 69.2 11.1 1 9.o 4.7 1 86.3 

tier memory are very similar. However, they differ in the starting times and lengths of 

execution. The dashed diagonal lines in figure 9.2 show the slopes of the starting execution 

times of new tasks. Nate that the slope of the line in figure (b) (two tier) is slightly steeper 

than that of figure (a) (single bus). By reducing memory contention due to locks and shared 

data, the two-tier memory allows faster task creation and shorter execution times, resulting 

in overall faster execution. 

9.5 Crossbar Cache Performance 

In section 8.3.3, we discussed two schemes for keeping the caches of the high­

bandwidth memory consistent. In this section, we evaluate the performance of these 

schemes. 

9.5.1 Restricted Caching 

Each AND-task or OR-task has a local task space. A memory access is internal 

if the accessed address is inside this local task space; otherwise, the memory access is 

external. Under the restricted caching scheme, only code and internal accesses are cached . 

Other accesses result in cache misses and must obtain data from memory, via the crossbar. 

Thus, a higher percentage of internal accesses would result in a better cache hit ratio. 

Table 9 ... shows a breakdown of the accesses in four categories: internal read, 

internal write, external read, and external write. The internal read column contains code 
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and internal local data accesses. The percentage of internal read varies from 61.5% to 81.5% 

and the percentage of internal write varies from 7.0% to 23.2%. This depends on the nature 

of the benchmark. For example in quicksort, both external read and external write make up 

high access percentages. This is because the two partitioned sublists to be sorted in parallel 

are stored in the parent's local space when passed to the children, thus reads to the these 

original sublists are external. After the sublists are sorted, the parent task does an external 

write when it links the two sorted sublists stored in the children's local space. Queens6 

shows the other extreme behavior: the tasks that explore the board positions mostly read 

and write in its own local space. 

On the average, internal read makes up the vast majority (69.2%) of all accesses, 

followed by internal write at 17.1 %. Both types of internal accesses together make up an 

average of 86.3% (shown in the last column). This number is also the maximum hit ratio 

obtainable for the crossbar caches. The actual hit ratio will be somewhat lower, depending 

on the cache parameters such as cache size, block size, and associativity. The degradation 

in performance due to a low hit ratio of restricted caching is offset by the high bandwidth of 

crossbar. Consider the following back-of-the-envelope calculations to compare performance 

of single bus versus crossbar. The approximate bus bandwidth can be computed as follows: 

b b d 
.d h _ width of data transfer (in bytes) 

us an wt t - d f . (. d ) ata trans er tzme m nanosecon s 

With the same width of data transfer and data transfer time for the crossbar, the maximum 

crossbar bandwidth is P times greater than bus bandwidth, where P is the number of 

processors, assuming that there are more memory modules than processors and that there 

are no bank conflict. Thus, the miss ratio of the crossbar cache can be up to P times 

higher than that of the single bus cache to provide the same performance. In our simulation 

example, P is 8, the average cache miss ratio is 3.9% for full caching and 13.7% for restricted 

caching. Thus maximum potential of 8X increase in bandwidth by using a crossbar is 

sufficient to offset the 3.5X increase in miss ratio. 

9.5.2 Broadcast for Invalidation 

In section 8.3.3, broadcast for invalidation was proposed as an alternative to re­

stricted caching. This scheme requires an invalidation bus connecting the caches together 

and a bus monitor built into each cache (a simple bus snoop mechanism). When the pro­

cessor writes to a cache block which it does not have exclusive ownership, the address of 
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Table 9.5: Write Percentage of Local Data 

number of number of write ratio 
Benchmark reads & writes writes (%) 
boyer 48223 22340 46.3 

chat 517325 250403 48.4 

ckt4 193986 65504 33.8 

compiler 571617 245296 42.9 

qsd200 54997 30816 56.0 

queens6 301510 118270 39.2 

query 40346 9940 24.6 

tp3 70818 36024 50.9 

average II 42.8 

the block is broadcasted on the invalidation bus and copies of the block in other caches are 

invalidated. In this section, we evaluate the performance of this broadcast scheme. 

Trace simulation is used to evaluate the crossbar cache performance. The cache 

trace simulator used is a multiprocessor extension of Dinero III, a uniprocessor cache sim­

ulator developed by Hill (Hil87]. Traces of local data accesses are collected during parallel 

execution on NuSim, in a four-tuple of (read/write, address, processor ID, timestamp). The 

traces are sorted in the order of the time stamps and fed into the multiple caches. 

In general, trace simulation has limited usefulness for multiprocessor cache eval­

uation (Bit89b]. In our case, trace simulation provides a good approximation of true per­

formance due to the following conditions: (1) local data traces have little sharing among 

them, and (2) no synchronization is needed for local data accesses. 

Table 9.5 shows the number of cache accesses and the percentage of cache writes. 

For boyer and tp3, only the period of active parallel execution is captured. During the other 

times, the execution is practically sequential and is uninteresting for multiprocessor cache 

study. Due to limited disk space to store the traces and limited processing power available 

for simulation, only the first half million accesses are captured for compiler and chat. A 

few simulation runs with larger traces for these two programs indicate that the half million 

traces are sufficiently indicative of the worst case performance. Other programs are run to 

completion. On the average, writes make up 42.8% of all accesses to local data (reads make 

up the other 57.2%). Compared to other languages, this fairly high percentage of writes is 

due to the nature of Prolog and the use of structure copying by the WAM model. 

Table 9.6 shows the performance of the broadcast for invalidation scheme. The 

• I 
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Table 9.6: Performance of Broadcast for Invalidation Coherency Scheme 

restricted broadcast for in validation 
caching 
hit ratio hit ratio number of number of broadcast 

Benchmark (%) (%) writes broadcasts ratio(%) 
boyer 90.2 95.6 22345 320 1.4 
chat 91.3 97.5 258834 9 0.0 
ckt4 84.6 97.5 65979 6443 9.8 
compiler 88.6 97.7 217879 146 0.1 
qsd200 79.7 96.9 31465 106 0.3 
queens6 94.1 98.9 121207 1785 1.5 
query 88.5 97.8 9993 45 0.5 
tp3 73.7 97.3 36244 131 0.4 

average II 86.3 97.4 1.8 

restricted caching hit ratio column is duplicated from table 9.4. The next four columns 

present performance measures for the broadcast scheme. Overall, broadcast for invalida­

tion yields a much higher hit ratio than restricted caching. More importantly, it supports 

data sharing among tasks more efficiently by being relatively insensitive to internal versus 

external access. The hit ratio column of the broadcast scheme contains the best obtainable 

hit ratios for direct mapped caches with sizes ranging from 4K to 256K bytes. For most 

programs, the hit ratio peaks at 32K or 64K; for some, the hit ratio continues to increase 

slightly beyond 32K. The average hit ratio of a 2-way associative cache is 97.6%, which is 

0.2 percentage point higher than that of a direct mapped cache of the same size. Overall 

for caches of size 32K or larger, 4-way associativity yields no better hit ratio than 2-way 

associativity. 

The broadcast ratio provides a measure for the degree of read sharing and task 

migration (recall that when a processor writes to a cache, that cache broadcasts an invalidate 

signal on the bus if it does not have exclusive ownership, i.e., one or more other caches 

contain copies of the block). The small broadcast ratios (most less than 2%) indicate that 

there is little sharing. One exception is ckt4, which has a broadcast ratio of 9.8%. In this 

case, ckt4 contains many tasks that terminate quickly, and the old task spaces are reused 

for the newly created tasks. Since the scheduling is quite random, a new task may get 

picked up by a different processor (similar to task migration), and the task space in the 

old processor's cache is invalidated. The extremely small broadcast ratios indicate that one 

invalidation bus should be sufficient to handle the broadcast traffic. 
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9.6 Discussion 

In the previous chapter, we described the Aquarius-IT multiprocessor system with 

the two-tier memory architecture, designed to reduce lock contention and provide very high 

processor to memory bandwidth. In this chapter, we have presented the simulation results 

of parallel execution of Prolog on the Aquarius-H. 

Although accesses to write-shared data and locks make up only 13% of the total 

number of accesses, they account for 29% of the total access time. With other coherency 

protocols which provide less efficient locking than the cache lock state protocol, the access 

time is even worse. By separating accesses to write-shared data and locks from accesses 

to code and other read-shared data, bus contention and bus traffic can greatly be reduced. 

Access time can be further improved by providing high bandwidth to memory using a 

crossbar. The two-tier memory architecture of the Aquarius-IT provides an average speedup 

of 1.16X; as expected, programs with a high degree of synchronization benefit most from 

the two-tier memory. In addition to the degree of parallelism that exists in the algorithm, 

the speedup depends heavily on the scheduler to maximize the hit ratios of the crossbar 

caches, and on the memory manager to minimize crossbar memory bank conflicts. 

With respect to coherency for the crossbar caches, restricted caching results in 

relatively low hit ratio (86.3% on average). Fortunately, the high bandwidth of the crossbar 

makes it comparable with unrestricted, full snooping schemes on single bus. Unfortunately, 

it is extremely sensitive to the degree of read sharing among the tasks and task migration. 

Broadcast for invalidation provides a more complete solution to the coherency problem. 

The measured average hit ratio of 97.4% is much better than that of restricted caching, and 

the scheme is more suitable for task migration and data sharing. If the scheduler takes into 

account the previous processor that executes a task, it can reduce task migration and thus 

greatly increase the hit ratio. 

The Aquarius-11 may also be used for programming paradigms other than logic 

programming. Its shared, high bandwidth memory architecture should make it suitable for 

memory intensive applications that also require a high degree of synchronization accesses 

during parallel execution. The Aquarius-11 may be used for a hybrid imperative/logic 

programming paradigm, such as a C program invoking Prolog routines for symbolic com­

putation. 
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Chapter 10 

Conclusion 

10.1 Summary and Contributions 

In this dissertation, the main focus has been on space distribution for a vast number 

of parallel tasks executing in a shared memory multiprocessor. A new shared memory 

multiprocessor has also been proposed to increase memory bandwidth and to reduce bus 

contention due to synchronization. The contributions of this dissertation are as follows: 

• A hybrid heap-stack scheme, called ELPS (Explicitly Linked Paging Stack), was pro­

posed for managing a globally shared space for parallel execution of Prolog. 

The dynamic allocation strategy of ELPS supports efficient sharing of global space, 

thus allowing a very large number of tasks to be created for exploiting the full paral­

lelism potential (as described in section 7.2.2). The obtainable speedup is dependent 

on the scheduler of the execution model. With hardware support, ELPS incurs an 

execution time overhead of 2% for a single cycle memory system. When caches are 

taken into consideration, ELPS overhead increases to 5% due to collision of the blocks 

in the cache. A hashing scheme was used to greatly reduce the collision. With soft­

ware only (no hardware support), the overhead of ELPS is less than 11% on average, 

including the effects of cache collisions. 

• A shared memory multiprocessor, called Aquarius ll, was proposed for fast synchro­

nization and high memory bandwidth. 

The memory architecture contains two tiers: the upper tier (called synchronization 

memory) has local caches connected to memory via a bus and the lower tier (called 
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high bandwidth memory) has local caches connected to memory via a crossbar. This 

architecture provides an average speed up of 1.16X by reducing contention on the 

bus and by providing high bandwidth to memory. Programs with a high degree of 

synchronization benefit most from such an architecture. Two coherency protocols 

for crossbar caches were evaluated. Compared with restricted caching, the broadcast 

for invalidation scheme provides much better hit ratios (97.4% versus 86.3% on av­

erage). More importantly, the broadcast scheme provides more efficient support for 

data sharing and task migration. 

• A flexible event-driven simulator, called NuSim, was developed to simulate the mul­

tiprocessor system at various levels. 

The modules in the simulator represent the parallel execution model, the processor 

(and its microcode), and the memory system. The memory system includes the cache 

coherency protocol. The features of NuSim include multi-level debugging and the ca­

pability to execute large benchmarks. This simulator was instrumental in evaluating 

the performance of ELPS and Aquarius-H. 

10.2 Future Work 

This dissertation has provided valuable insights into the tradeoff's of a dynamic 

allocation scheme as an alternative to other approaches. Complete memory management 

for parallel execution should include a combination of approaches. Future work in memory 

management can be extended to include the following: 

• reduction of ELPS 01Jerhead. 

With the simple hashing scheme described in section 7.2.3, collisions in the cache 

blocks are less frequent, resulting in an average of 5% overhead. With a more careful 

mapping of the pages, this overhead can be reduced to 2% (when no caches are used) 

or even less with improved scheduling. This overhead reduction is especially important 

for newer execution models of Prolog, in which the sequential engine is more efficient 

than the WAM. 

• garbage collection. 

A local garbage collection scheme which garbage collects only sections of data known 

to be unshared should do well in reclaiming unused space and should not interfere 
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with other busy processors. A new ELPS page can be quickly allocated should the 

current space overflows even after garbage collection. 

• variable ELPS page size. 

For the chosen benchmark set, the overflow frequency and overflow handling time 

are insignificant. Should this become a problem, the ELPS page size could be dou­

bled for each time a stack overflows. However, the advantage of reduced overflow 

frequency may not be sufficient to overcome the disadvantages of the extra overhead 

for bookkeeping variable sized pages and the space left unused in a large page. 

• multiple free page lists. 

As the overflow frequency increases, the single free page list becomes a bottleneck. 

Multiple lists may be kept to reduce this bottleneck and to increase the locality of the 

pages with respect to a processor. 

• improved scheduling. 

By taking into account the processor that previously executes a given task, the sched­

uler can keep a task local to a processor as much as possible to increase better cache 

performance. Furthermore, if the scheduler can provide an approximation on the size 

and nature of space usage by a task, more appropriate memory management measures 

can be taken (e.g., variable page size, incremental garbage collection). 

• virtual memory. 

In this dissertation, ELPS is considered to be implemented on a system with no 

virtual memory. When ELPS is implemented on top of virtual memory, the factors to 

be considered include: ELPS page size, bookkeeping strategy and allocation strategy. 

The ELPS page size should be a multiple of a virtual page (and hence a multiple of 

a physical page frame), since much of the space in a page may be left unused. The 

ELPS free page list maintenance and page allocation should be done to minimize the 

number of page faults (this implies that pages should be reused as much as possible). 

The work on the Aquarius II presented in this dissertation is only a preliminary 

evaluation of this two tier memory architecture. The success of this architecture depends 

heavily on ability to build a fast and inexpensive crossbar which is competitive with state 

of the art buses. Future work on this two-tier memory architecture may include: 
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• a detailed study of bus designs. 

There various techniques that can increase effective bus bandwidth (e.g., pipeline 

requests) and speed up response time of a. cache miss (e.g., cache bypass). These 

features may increase the bus performance to the level of a. slow crossbar. 

• a detailed study of crossbar designs. 

The low-latency crossbar chip designed by Srini [Sri88] is a. good candidate for detailed 

simulation studies. Advanced VLSI technology allows such complex circuitry to be 

mass-produced at low cost. 

• mappings of task spaces onto crossbar memory modules. 

To achieve the highest potential bandwidth of a. crossbar, the memory spaces used by 

the parallel tasks should be mapped onto the memory modules of the crossbar in a 

way such that module conflicts are minimized. 

• other parallel programming paradigms. 

The shared memory architecture of Aquarius II makes it suitable for a. wide variety of 

programming applications that exploit medium grain parallelism. This dissertation 

discussed the application of Aquarius II for logic programming. Its application for 

other parallel programming paradigms should be explored. 

The multiprocessor simulation methodology employed in this dissertation has been 

invaluable in evaluating the performance of the proposed memory management scheme and 

the multiprocessor architecture. The modular design of NuSim makes it possible to simulate 

other multiprocessor architectures (i.e., processor, memory, and interconnection network) by 

replacing the appropriate modules. For example, the VLSI-PLM processor module may be 

replaced with a. commercial microprocessor, or the cache lock state protocol may be replaced 

with another cache coherency protocol. The task kernel module for parallel Prolog may be 

replaced with parallel execution model for other programming paradigms. On the negative 

side, the interpretive nature of the simulator and the limited memory space and processing 

power of the host machine have somewhat restricted the full potential of the simulator. 

These problems can be reduced with more powerful host machines for simulation. 
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10.3 Concluding Remarks 

As multiprocessors become more complex, the problem of memory management 

for parallel execution is increasingly difficult. It is often beyond the comprehension and 

the manageability of the programmer. Porting software to various multiprocessors while 

maintaining good memory performance is also a major problem. Therefore, to increase 

programmability of parallel architectures, memory management should be done by the 

system (and not by the application programmer). 

Although shared memory multiprocessors provide an easy to program environment 

for a wide variety of applications, this shared space must still be properly managed. A 

programming language, such as Prolog, that provides implicit memory management support 

frees the programmer from the concern of memory management. This dissertation provides a 

possible implementation for such implicit memory management support. By combining two 

well known concepts (heap and stack), the resulting solution is more capable of adapting 

to the dynamic memory requirements of parallel execution. It is envisioned that other 

solutions to memory management problem will also be a hybrid of existing techniques to 

deal with the various levels of space requirement during parallel execution. 

In the current state of computer technology, uniprocessor systems provide the 

lowest cost/performance ratio for most general purpose computing. Since multiprocessor 

systems take longer to build, they often do not take advantage of the latest processor 

technology. Parallel languages and programming environments need to sufficiently mature 

to take full advantage of the multiprocessors, while multiprocessor systems should become 

more widely available at much lower costs. As the programmers move away from the 

sequential programming mindset, the quantum leap in parallel processing may be realized: 

the development of practical and efficient parallel algorithms. 
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Appendix A 

NuSim User's Manual 
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NAME 
nusim - a multiprocessor simulation system for parallel execution of Prolog. 

SYNOPSIS 
nusim -h 
nusim [-option [option_arg~nt] ..• ] [ PLM-o.ssembly-ftle] 

DESCRIPTION 
NuSim is a simulator framework for the complete system simulation of a multiprocess<r architecture: from 

the instruction set level to the memory architecture level with caches and communication protocols. The 
key feature of this simulator framework is flexibility, which allows for extensive instrumentation and con­
tinual updates and changes. The modular design identifies main features of the execution model and the 

architectures being simulated as cleanly separated modules with clearly defined interfaces. Thi;,; allows for 
easy modifications to the individual modules to suppon new execution models and architectures. 

NuSim's ease-of-use features include: 

• on-line help messages to quickly show the default settings and briefly explain the commands. 
This also allows help messages to be updated mcwe easily than being kept in a separate document 

• comfirmation messages to provide feedback that a command has been carried out properly or to 

explain the error if the command given is incorrect 

• automatic initialization by reading the commands from an initialization file upon starting up. 
This feature frees the user from having to repeatedly typing in the same commands upon initiali­
zation, such as which benchmark program to load and whel'e to set the breakpoints. 

• a high level debugger, called NuSim Debugger, which can interact with a symbolic debugger 
(such as GNU GDB or UI'IU DBX) to )X'Ovide a multi-level level debugging environment 

• a graphical interface, called %NuSim, which provides a multiple window environment f<X" view-
ing activities of processors and tasks. 

Currently, the simulator suppons the PPP Execution Model, which exploits AND/OR parallelism in Prolog 
programs, and a Multi memory architecture, multiple coherent caches on a single bus. The processor 
module of NuSim is the VLSI-PLM. 

OPTIONS 
The following options are available f<X" configuring the multiprocess<r system, the execution model, and 
the statistics collection: 

-h 

-s 

-d 

-i level 

-m trace 

-n 

-pProcs 

·t Tasks 

-wWords 

-q cycles 

·U 

-x cycle 

pint the help message listing all the options and their current default values (in 
parentheses). 

toggle switch to simulate idle process<rS (NO) 

toggle interactive debug mode (DEBUG) 

instrument to .data file O.none !.various 2.inst (1) 

memory traces to .mt file; trace: O.no l.data 2.code & data) (0) 

collect task (node) statistics (NO) 

number of processors to simulate (max=8) 

number of tasks allowable (max-64) 

hashwindow size (128) 

quantum between each .stat dump (5000000) 

set unordered output (ORDER) 

time where execution is forced to terminate (MAX_INT) 



The following are options to configure the cache system: 

-Cd Kbytes cache data size (64K) 

-Cb Bytes cache block size (16) 

-Ca Assoc cache set associativity (4) 

-CrPolicy 

-Cw Policy 

-Cs Integer 

-Ci 

-CD 

cache replacement policy 0) I• LRU, f • FIFO, r • random 

cache write policy (b) b =write back, t =write through 

seed for random policy (1) 

enable instruction address ttacing (off) 

enable event stream output (off) 

The following options are f<r configuring bus and memory lalency: 

-Ba cycles bus arbitration time (1) 

-Bb cycles bus broadcast time (2) 

-Ma cycles 

-Mb cycles 

-Ms Kbytes 

memory access time (2) 

memory burst time (1) 

memory callocO size (8K) 

The following are the ELPS memory managemem options: 

-Ep words ELPS page size (4096) 

-Es cycles EI...PS boundary ovcriow check time (2 for software; 0 f<r hardware) 

NUSIM DEBUGGER COMMANDS 
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When NuSim running with the debugger option (ON by default) first starts up, commands from a file 
nusim.startup is executed, if this file exists. Then the prompt NU.Sim:TOP> will appear (after the initial 
'run', subsequent breaks will show the promptNII.Sim:DBG>. At the NuSim debugger prompt, 'h' for the 
root help menu. The commands at the root menu are: 

h 

mmenu 

stat 

loadf 

run 

s 

c 

pint this help message 

show the other menus: 1.system 2.display 3.breakpt 4.trace S.dump 

show simulator SlatUs 

load file into code space 

stan simulation nm 

step simulation (single instructioo) 

continuous simulation 

dbx switch control to dbx debuggec 

Type 'm <menu I>' will show the other menus with corresponding explanations. The following are some 
of the commands used to set up breaktime, lreak points, and trace points: 

be pid tid let the break/trace environment, the processor and task pair for which the break/trace 
point is to take effect (-1 for all processors/Wks). 

bt time 

bp a 'bit' 

cbc n 'bit' 

rma 

set the break time (cycle count of the simulated multiprocessor) 

set a break/ttace point at an address/label/procedure; the secood argument 'b' or 't' to 
select whether to break or trace. 

change break/trace point In for break <r trace. 

remove break/trace point at addreSS/label/procedure. 
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nnall remove all break/1race poin~ 

sb show break/trace poin~ 

Tracing fer all procedures/instructions can be done with the following commands: 

trace lvf set trace level: O.off l.instruction 2.procedure. 

tllv pid tid 

tppid 

set trace level for a specified pocessa and wk; only one such trace can be set. 

set trace IJ'OCessoT number 

tttid ~ttrace~nwnber 

For many other debugging commands, use the online menu system for help messages. 

MULTll..EVEL DEBUGGING 
The NuSim debugger can interact with a C symbolic debugger (GNU GDB or Unix DBX) for debugging at 
both the VLSI-PLM instruction level and at the C code level (which represen~ the mic~ngine). A 
dummy function dbx brealc() is used to transfer control to the C symbolic debugger. To set up multilevel 
debugging, start up the C symbolic debugger and set up the breakpoint and alias as follows: 

forDBX: 

forGDB: 

% dbx nusim 
(dbx) stop in dbx_brtalc 
(dbx) alias menu "call debug_ level()" 
(dbx) alias c "coni" 
(dbx) rWl [ <nusim options> ... ] [PLM-assembly-file) 

%gdbnusim 
( gdb) brtalc dbx _ brtalc 
(gdb) define menu 

prilll debug_ lew/() 
end 

(gdb) rWl [ <nusim options> ... ) [PLM-assembly-file] 

After NuSim is invoked, the NuSim:TOP> prompt will appear. Aftc:t the initial command 'nm' to NuSim, 
subsequent breaks will show either the NuSim:DBG> pompt or the (gdb) (or (dbx)) prompt, depending on 
whether the breakpoint was set in the NuSim debugger or the C symbolic debugger. If the NuSim:DBG> 
prompt appears at the breakpoint, typing 'dbx' will get to the C debugger prompt, and typing 'c' will get 
back to the NuSim debugger before continuing execution. If the C debugger prompt is shown at the break­
point, typing 'menu' will get to the NuSim debugger level, and multilevel debugging provides a simple 
way to observe data structures at the desired level of abstraction (a Prolog structure or a memory location) 
and setting breakpoin~ at the desired granularity. 

UMITATIONS 
The size of memory that can be allocated for simulating the target multiprocessor memory is dependent on 
the swap space available on the host which executes the simulator. 

SEE ALSO 
xnusim(l) 

AUTHORS 
Tam M Nguyen (simulation framework. debugger, and pocessa module), 
Chien Chen (PPP ~kernel), and 
Mike Carlton (cache and memory module)­
University of California at Berkeley. 
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